Cargando…

Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow

The theory of incompressible multipolar viscous fluids is a non-Newtonian model of fluid flow, which incorporates nonlinear viscosity, as well as higher order velocity gradients, and is based on scientific first principles. The Navier-Stokes model of fluid flow is based on the Stokes hypothesis, whi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Bellout, Hamid (Autor), Bloom, Frederick (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2014.
Edición:1st ed. 2014.
Colección:Advances in Mathematical Fluid Mechanics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-00891-2
003 DE-He213
005 20220117011821.0
007 cr nn 008mamaa
008 131113s2014 sz | s |||| 0|eng d
020 |a 9783319008912  |9 978-3-319-00891-2 
024 7 |a 10.1007/978-3-319-00891-2  |2 doi 
050 4 |a QC19.2-20.85 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
072 7 |a PHU  |2 thema 
082 0 4 |a 530.15  |2 23 
100 1 |a Bellout, Hamid.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Incompressible Bipolar and Non-Newtonian Viscous Fluid Flow  |h [electronic resource] /  |c by Hamid Bellout, Frederick Bloom. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a XX, 569 p. 16 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Mathematical Fluid Mechanics,  |x 2297-0339 
505 0 |a Preface -- Acknowledgements -- I Incompressible Multipolar Fluid Dynamics -- II Plane Poiseuille Flow of Incompressible Bipolar Viscous Fluids -- III Incompressible Bipolar Fluid Dynamics: Examples of Other Flows and Geometries -- IV General Existence and Uniqueness Theorems for Incompressible Bipolar and non-Newtonian Fluid Flow -- V Attractors for Incompressible Bipolar and non-Newtonian Flows: Bounded Domains and Space Periodic Problems -- VI Inertial Manifolds, Orbit Squeezing, and Attractors for Bipolar Flow in Unbounded Channels -- A.I Notation, Definitions, and Results from Analysis -- A.II Estimates Involving the Rate of Deformation Tensor -- A.III The Spectral Gap Condition -- Bibliography -- Index. 
520 |a The theory of incompressible multipolar viscous fluids is a non-Newtonian model of fluid flow, which incorporates nonlinear viscosity, as well as higher order velocity gradients, and is based on scientific first principles. The Navier-Stokes model of fluid flow is based on the Stokes hypothesis, which a priori simplifies and restricts the relationship between the stress tensor and the velocity. By relaxing the constraints of the Stokes hypothesis, the mathematical theory of multipolar viscous fluids generalizes the standard Navier-Stokes model. The rigorous theory of multipolar viscous fluids  is compatible with all known thermodynamical processes and the principle of material frame indifference; this is in contrast with the formulation of most non-Newtonian fluid flow models which result from ad hoc assumptions about the relation between the stress tensor and the velocity. The higher-order boundary conditions, which must be formulated for multipolar viscous flow problems, are a rigorous consequence of the principle of virtual work; this is in stark contrast to the approach employed by authors who have studied the regularizing effects of adding artificial viscosity, in the form of higher order spatial derivatives, to the Navier-Stokes model.   A number of research groups, primarily in the United States, Germany, Eastern Europe, and China, have explored the consequences of multipolar viscous fluid models; these efforts, and those of the authors, which are described in this book, have focused on the solution of problems in the context of specific geometries, on the existence of weak and classical solutions, and on dynamical systems aspects of the theory.   This volume will be a valuable resource for mathematicians interested in solutions to systems of nonlinear partial differential equations, as well as to applied mathematicians, fluid dynamicists, and mechanical engineers with an interest in the problems of fluid mechanics. 
650 0 |a Mathematical physics. 
650 0 |a Differential equations. 
650 0 |a Continuum mechanics. 
650 1 4 |a Mathematical Physics. 
650 2 4 |a Differential Equations. 
650 2 4 |a Continuum Mechanics. 
700 1 |a Bloom, Frederick.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319008929 
776 0 8 |i Printed edition:  |z 9783319008905 
776 0 8 |i Printed edition:  |z 9783319345536 
830 0 |a Advances in Mathematical Fluid Mechanics,  |x 2297-0339 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-00891-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)