Cargando…

The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise

This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method deve...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Debussche, Arnaud (Autor), Högele, Michael (Autor), Imkeller, Peter (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Lecture Notes in Mathematics, 2085
Temas:
Acceso en línea:Texto Completo
Descripción
Sumario:This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.
Descripción Física:XIV, 165 p. 9 illus., 8 illus. in color. online resource.
ISBN:9783319008288
ISSN:1617-9692 ;