Cargando…

Mathematical Modelling of the Cell Cycle Stress Response

The cell cycle is a sequence of biochemical events that are controlled by complex but robust molecular machinery. This enables cells to achieve accurate self-reproduction under a broad range of conditions. Environmental changes are transmitted by molecular signaling networks, which coordinate their...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Radmaneshfar, Elahe (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edición:1st ed. 2014.
Colección:Springer Theses, Recognizing Outstanding Ph.D. Research,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-00744-1
003 DE-He213
005 20220113144249.0
007 cr nn 008mamaa
008 131008s2014 sz | s |||| 0|eng d
020 |a 9783319007441  |9 978-3-319-00744-1 
024 7 |a 10.1007/978-3-319-00744-1  |2 doi 
050 4 |a QH505 
072 7 |a PHVN  |2 bicssc 
072 7 |a SCI009000  |2 bisacsh 
072 7 |a PHVN  |2 thema 
082 0 4 |a 571.4  |2 23 
100 1 |a Radmaneshfar, Elahe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mathematical Modelling of the Cell Cycle Stress Response  |h [electronic resource] /  |c by Elahe Radmaneshfar. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XV, 109 p. 36 illus., 29 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
505 0 |a A biological overview of the cell cycle and its response to osmotic stress and the α-factor -- ODE model of the cell cycle response to osmotic stress -- Boolean model of the cell cycle response to stress -- Conclusion -- List of equations, parameters and initial conditions -- Effect of methods of update on existence of fixed points. 
520 |a The cell cycle is a sequence of biochemical events that are controlled by complex but robust molecular machinery. This enables cells to achieve accurate self-reproduction under a broad range of conditions. Environmental changes are transmitted by molecular signaling networks, which coordinate their actions with the cell cycle.   This work presents the first description of two complementary computational models describing the influence of osmotic stress on the entire cell cycle of S. cerevisiae. Our models condense a vast amount of experimental evidence on the interaction of the cell cycle network components with the osmotic stress pathway. Importantly, it is only by considering the entire cell cycle that we are able to make a series of novel predictions which emerge from the coupling between the molecular components of different cell cycle phases.   The model-based predictions are supported by experiments in S. cerevisiae and, moreover, have recently been observed in other eukaryotes. Furthermore our models reveal the mechanisms that emerge as a result of the interaction between the cell cycle and stress response networks. 
650 0 |a Biophysics. 
650 0 |a Cytology-Technique. 
650 0 |a Biomathematics. 
650 0 |a Bioinformatics. 
650 0 |a Graph theory. 
650 1 4 |a Biophysics. 
650 2 4 |a Cytological Techniques. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Computational and Systems Biology. 
650 2 4 |a Graph Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319007458 
776 0 8 |i Printed edition:  |z 9783319007434 
776 0 8 |i Printed edition:  |z 9783319346205 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-00744-1  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)