Cargando…

Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications A Support Vector Machine Approach /

Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Terzic, Jenny (Autor), Terzic, Edin (Autor), Nagarajah, Romesh (Autor), Alamgir, Muhammad (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-00633-8
003 DE-He213
005 20220116232045.0
007 cr nn 008mamaa
008 130615s2013 sz | s |||| 0|eng d
020 |a 9783319006338  |9 978-3-319-00633-8 
024 7 |a 10.1007/978-3-319-00633-8  |2 doi 
050 4 |a TL1-483 
072 7 |a TRC  |2 bicssc 
072 7 |a TEC009090  |2 bisacsh 
072 7 |a TRC  |2 thema 
082 0 4 |a 629.2  |2 23 
100 1 |a Terzic, Jenny.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications  |h [electronic resource] :  |b A Support Vector Machine Approach /  |c by Jenny Terzic, Edin Terzic, Romesh Nagarajah, Muhammad Alamgir. 
250 |a 1st ed. 2013. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a XIV, 129 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- Ultrasonic Sensing Technology.- Ultrasonic Sensor Based Fluid Level Sensing Using Support Vector Machines -- Methodology and Experimental Program -- Experimentation -- Results -- Discussion -- Conclusion and Future Work. 
520 |a Accurate fluid level measurement in dynamic environments can be assessed using a Support Vector Machine (SVM) approach. SVM is a supervised learning model that analyzes and recognizes patterns. It is a signal classification technique which has far greater accuracy than conventional signal averaging methods. Ultrasonic Fluid Quantity Measurement in Dynamic Vehicular Applications: A Support Vector Machine Approach describes the research and development of a fluid level measurement system for dynamic environments. The measurement system is based on a single ultrasonic sensor. A Support Vector Machines (SVM) based signal characterization and processing system has been developed to compensate for the effects of slosh and temperature variation in fluid level measurement systems used in dynamic environments including automotive applications. It has been demonstrated that a simple ν-SVM model with Radial Basis Function (RBF) Kernel with the inclusion of a Moving Median filter could be used to achieve the high levels of accuracy required for fluid level measurement in dynamic environments. Aimed toward graduate and postgraduate students, researchers, and engineers studying applications of artificial intelligence, readers will learn about a measurement system that is based on a single ultrasonic sensor which can achieve the high levels of accuracy required for fluid level measurement in dynamic environments. 
650 0 |a Automotive engineering. 
650 0 |a Fluid mechanics. 
650 0 |a Measurement. 
650 0 |a Measuring instruments. 
650 0 |a Artificial intelligence. 
650 1 4 |a Automotive Engineering. 
650 2 4 |a Engineering Fluid Dynamics. 
650 2 4 |a Measurement Science and Instrumentation. 
650 2 4 |a Artificial Intelligence. 
700 1 |a Terzic, Edin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Nagarajah, Romesh.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Alamgir, Muhammad.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319006345 
776 0 8 |i Printed edition:  |z 9783319033273 
776 0 8 |i Printed edition:  |z 9783319006321 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-00633-8  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)