Cargando…

The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups

This manuscript is devoted to classifying the isomorphism classes of the virtually cyclic subgroups of the braid groups of the 2-sphere. As well as enabling us to understand better the global structure of these groups, it marks an important step in the computation of the K-theory of their group ring...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Lima Goncalves, Daciberg (Autor), Guaschi, John (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:SpringerBriefs in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-00257-6
003 DE-He213
005 20220116161231.0
007 cr nn 008mamaa
008 130907s2013 sz | s |||| 0|eng d
020 |a 9783319002576  |9 978-3-319-00257-6 
024 7 |a 10.1007/978-3-319-00257-6  |2 doi 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
100 1 |a Lima Goncalves, Daciberg.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Classification of the Virtually Cyclic Subgroups of the Sphere Braid Groups  |h [electronic resource] /  |c by Daciberg Lima Goncalves, John Guaschi. 
250 |a 1st ed. 2013. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a X, 102 p. 26 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematics,  |x 2191-8201 
505 0 |a Introduction and statement of the main results -- Virtually cyclic groups: generalities, reduction and the mapping class group -- Realisation of the elements of V1(n) and V2(n) in Bn(S2) -- Appendix: The subgroups of the binary polyhedral groups -- References.                                        . 
520 |a This manuscript is devoted to classifying the isomorphism classes of the virtually cyclic subgroups of the braid groups of the 2-sphere. As well as enabling us to understand better the global structure of these groups, it marks an important step in the computation of the K-theory of their group rings. The classification itself is somewhat intricate, due to the rich structure of the finite subgroups of these braid groups, and is achieved by an in-depth analysis of their group-theoretical and topological properties, such as their centralisers, normalisers and cohomological periodicity. Another important aspect of our work is the close relationship of the braid groups with mapping class groups. This manuscript will serve as a reference for the study of braid groups of low-genus surfaces, and isaddressed to graduate students and researchers in low-dimensional, geometric and algebraic topology and in algebra. 
650 0 |a Group theory. 
650 0 |a Algebraic topology. 
650 0 |a Algebra. 
650 1 4 |a Group Theory and Generalizations. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Algebra. 
700 1 |a Guaschi, John.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319002583 
776 0 8 |i Printed edition:  |z 9783319002569 
830 0 |a SpringerBriefs in Mathematics,  |x 2191-8201 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-00257-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)