Cargando…

Hypoelliptic Laplacian and Bott-Chern Cohomology A Theorem of Riemann-Roch-Grothendieck in Complex Geometry /

The book provides the proof of a complex geometric version of a well-known result in algebraic geometry: the theorem of Riemann-Roch-Grothendieck for proper submersions. It gives an equality of cohomology classes in Bott-Chern cohomology, which is a refinement for complex manifolds of de Rham cohomo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bismut, Jean-Michel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Birkhäuser, 2013.
Edición:1st ed. 2013.
Colección:Progress in Mathematics, 305
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-00128-9
003 DE-He213
005 20220114100659.0
007 cr nn 008mamaa
008 130524s2013 sz | s |||| 0|eng d
020 |a 9783319001289  |9 978-3-319-00128-9 
024 7 |a 10.1007/978-3-319-00128-9  |2 doi 
050 4 |a QA612.33 
072 7 |a PBPD  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBPD  |2 thema 
082 0 4 |a 512.66  |2 23 
100 1 |a Bismut, Jean-Michel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hypoelliptic Laplacian and Bott-Chern Cohomology  |h [electronic resource] :  |b A Theorem of Riemann-Roch-Grothendieck in Complex Geometry /  |c by Jean-Michel Bismut. 
250 |a 1st ed. 2013. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a XV, 203 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 2296-505X ;  |v 305 
505 0 |a Introduction -- 1 The Riemannian adiabatic limit -- 2 The holomorphic adiabatic limit -- 3 The elliptic superconnections -- 4 The elliptic superconnection forms -- 5 The elliptic superconnections forms -- 6 The hypoelliptic superconnections -- 7 The hypoelliptic superconnection forms -- 8 The hypoelliptic superconnection forms of vector bundles -- 9 The hypoelliptic superconnection forms -- 10 The exotic superconnection forms of a vector bundle -- 11 Exotic superconnections and Riemann-Roch-Grothendieck -- Bibliography -- Subject Index -- Index of Notation.  . 
520 |a The book provides the proof of a complex geometric version of a well-known result in algebraic geometry: the theorem of Riemann-Roch-Grothendieck for proper submersions. It gives an equality of cohomology classes in Bott-Chern cohomology, which is a refinement for complex manifolds of de Rham cohomology. When the manifolds are Kähler, our main result is known. A proof can be given using the elliptic Hodge theory of the fibres, its deformation via Quillen's superconnections, and a version in families of the 'fantastic cancellations' of McKean-Singer in local index theory. In the general case, this approach breaks down because the cancellations do not occur any more. One tool used in the book is a deformation of the Hodge theory of the fibres to a hypoelliptic Hodge theory, in such a way that the relevant cohomological information is preserved, and 'fantastic cancellations' do occur for the deformation. The deformed hypoelliptic Laplacian acts on the total space of the relative  tangent bundle of the fibres. While the original hypoelliptic Laplacian discovered by the author can be described in terms of the harmonic oscillator along the tangent bundle and of the geodesic flow, here, the harmonic oscillator has to be replaced by a quartic oscillator. Another idea developed in the book is that while classical elliptic Hodge theory is based on the Hermitian product on forms, the hypoelliptic theory involves a Hermitian pairing which is a mild modification of intersection pairing. Probabilistic considerations play an important role, either as a motivation of some constructions, or in the proofs themselves. 
650 0 |a K-theory. 
650 0 |a Differential equations. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a K-Theory. 
650 2 4 |a Differential Equations. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319001296 
776 0 8 |i Printed edition:  |z 9783319033891 
776 0 8 |i Printed edition:  |z 9783319001272 
830 0 |a Progress in Mathematics,  |x 2296-505X ;  |v 305 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-00128-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)