Cargando…

Temporal Patterns of Communication in Social Networks

The main interest of this research has been in understanding and characterizing large networks of human interactions as continuously changing objects. In fact, although many real social networks are dynamic networks whose elements and properties continuously change over time, traditional approaches...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Miritello, Giovanna (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Colección:Springer Theses, Recognizing Outstanding Ph.D. Research,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-00110-4
003 DE-He213
005 20220119174554.0
007 cr nn 008mamaa
008 130424s2013 sz | s |||| 0|eng d
020 |a 9783319001104  |9 978-3-319-00110-4 
024 7 |a 10.1007/978-3-319-00110-4  |2 doi 
050 4 |a QA166-166.247 
072 7 |a PBV  |2 bicssc 
072 7 |a SCI064000  |2 bisacsh 
072 7 |a PBV  |2 thema 
082 0 4 |a 511.5  |2 23 
100 1 |a Miritello, Giovanna.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Temporal Patterns of Communication in Social Networks  |h [electronic resource] /  |c by Giovanna Miritello. 
250 |a 1st ed. 2013. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a XIV, 153 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
505 0 |a Introduction and Motivation -- Social and Communication Networks -- Social Strategies in Communication Networks -- Predicting Tie Creation and Decay -- Information Spreading on Communication Networks -- Conclusion, contributions and vision for the future -- Data and Materials. 
520 |a The main interest of this research has been in understanding and characterizing large networks of human interactions as continuously changing objects. In fact, although many real social networks are dynamic networks whose elements and properties continuously change over time, traditional approaches to social network analysis are essentially static, thus neglecting all temporal aspects. Specifically, we have investigated the role that temporal patterns of human interaction play in three main fields of social network analysis and data mining: characterization of time (or attention) allocation in social networks, prediction of link decay/persistence, and information spreading. In order to address this we analyzed large anonymized data sets of phone call communication traces over long periods of time. Access to these observations was granted by Telefonica Research, Spain. The findings that emerge from our research indicate that the observed heterogeneities and correlations of human temporal patterns of interaction significantly affect the traditional view of social networks, shifting from a very steady to a highly complex entity. Since structure and dynamics are tightly coupled, they cannot be disentangled in the analysis and modeling of human behavior, though traditional models seek to do so. Our results impact not only the way in which social network are traditionally characterized, but more importantly also the understanding and modeling phenomena such as group formation, spread of epidemics, and the dissemination of ideas, opinions and information. 
650 0 |a Graph theory. 
650 0 |a Mathematics. 
650 0 |a Social sciences. 
650 0 |a Communication. 
650 0 |a System theory. 
650 0 |a Game theory. 
650 1 4 |a Graph Theory. 
650 2 4 |a Mathematics in the Humanities and Social Sciences. 
650 2 4 |a Media and Communication. 
650 2 4 |a Complex Systems. 
650 2 4 |a Game Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319001111 
776 0 8 |i Printed edition:  |z 9783319033419 
776 0 8 |i Printed edition:  |z 9783319001098 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5061 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-00110-4  |z Texto Completo 
912 |a ZDB-2-PHA 
912 |a ZDB-2-SXP 
950 |a Physics and Astronomy (SpringerNature-11651) 
950 |a Physics and Astronomy (R0) (SpringerNature-43715)