Cargando…

Lyapunov Functionals and Stability of Stochastic Functional Differential Equations

Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Shaikhet, Leonid (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2013.
Edición:1st ed. 2013.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-319-00101-2
003 DE-He213
005 20220116092754.0
007 cr nn 008mamaa
008 130330s2013 sz | s |||| 0|eng d
020 |a 9783319001012  |9 978-3-319-00101-2 
024 7 |a 10.1007/978-3-319-00101-2  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
100 1 |a Shaikhet, Leonid.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lyapunov Functionals and Stability of Stochastic Functional Differential Equations  |h [electronic resource] /  |c by Leonid Shaikhet. 
250 |a 1st ed. 2013. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 342 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Short Introduction to Stability Theory of Deterministic Functional Differential Equations -- Stability of Linear Scalar Equations -- Stability of Linear Systems of Two Equations -- Stability of Systems with Nonlinearities -- Matrix Riccati Equations in Stability of Linear Stochastic Differential Equations with Delays -- Stochastic Systems with Markovian Switching -- Stabilization of the Controlled Inverted Pendulum by Control with Delay -- Stability of Equilibrium Points of Nicholson's Blowflies Equation with Stochastic Perturbations -- Stability of Positive Equilibrium Point of Nonlinear System of Type of Predator-Prey with Aftereffect and Stochastic Perturbations -- Stability of SIR Epidemic Model Equilibrium Points -- Stability of Some Social Mathematical Models with Delay by Stochastic Perturbations. 
520 |a Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author's previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for discrete- and continuous-time difference equations. The text begins with a description of the peculiarities of deterministic and stochastic functional differential equations. There follow basic definitions for stability theory of stochastic hereditary systems, and a formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of different mathematical models such as: • inverted controlled pendulum; • Nicholson's blowflies equation; • predator-prey relationships; • epidemic development; and • mathematical models that describe human behaviours related to addictions and obesity. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations is primarily addressed to experts in stability theory but will also be of interest to professionals and students in pure and computational mathematics, physics, engineering, medicine, and biology. 
650 0 |a Control engineering. 
650 0 |a Difference equations. 
650 0 |a Functional equations. 
650 0 |a System theory. 
650 0 |a Mathematical optimization. 
650 0 |a Calculus of variations. 
650 0 |a Probabilities. 
650 0 |a Multibody systems. 
650 0 |a Vibration. 
650 0 |a Mechanics, Applied. 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Difference and Functional Equations. 
650 2 4 |a Complex Systems. 
650 2 4 |a Calculus of Variations and Optimization. 
650 2 4 |a Probability Theory. 
650 2 4 |a Multibody Systems and Mechanical Vibrations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319001029 
776 0 8 |i Printed edition:  |z 9783319033525 
776 0 8 |i Printed edition:  |z 9783319001005 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-319-00101-2  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)