Diophantine Approximation Festschrift for Wolfgang Schmidt /
This volume contains 22 research and survey papers on recent developments in the field of diophantine approximation. The first article by Hans Peter Schlickewei is devoted to the scientific work of Wolfgang Schmidt. Further contributions deal with the subspace theorem and its applications to diophan...
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Vienna :
Springer Vienna : Imprint: Springer,
2008.
|
Edición: | 1st ed. 2008. |
Colección: | Developments in Mathematics,
|
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- The Mathematical Work of Wolfgang Schmidt
- SchÄffer's Determinant Argument
- Arithmetic Progressions and Tic-Tac-Toe Games
- Metric Discrepancy Results for Sequences {nkx} and Diophantine Equations
- Mahler's Classification of Numbers Compared with Koksma's, II
- Rational Approximations to A q-Analogue of ? and Some Other q-Series
- Orthogonality and Digit Shifts in the Classical Mean Squares Problem in Irregularities of Point Distribution
- Applications of the Subspace Theorem to Certain Diophantine Problems
- A Generalization of the Subspace Theorem With Polynomials of Higher Degree
- On the Diophantine Equation G n (x) = G m (y) with Q (x, y)=0
- A Criterion for Polynomials to Divide Infinitely Many k- Nomials
- Approximants de Padé des q-Polylogarithmes
- The Set of Solutions of Some Equation for Linear Recurrence Sequences
- Counting Algebraic Numbers with Large Height I
- Class Number Conditions for the Diagonal Case of the Equation of Nagell and Ljunggren
- Construction of Approximations to Zeta-Values
- Quelques Aspects Diophantiens des VariéTés Toriques Projectives
- Une Inégalité de ?ojasiewicz Arithmétique
- On the Continued Fraction Expansion of a Class of Numbers
- The Number of Solutions of a Linear Homogeneous Congruence
- A Note on Lyapunov Theory for Brun Algorithm
- Orbit Sums and Modular Vector Invariants
- New Irrationality Results for Dilogarithms of Rational Numbers.