Cargando…

The Strength of Nonstandard Analysis

Nonstandard Analysis enhances mathematical reasoning by introducing new ways of expression and deduction. Distinguishing between standard and nonstandard mathematical objects, its inventor, the eminent mathematician Abraham Robinson, settled in 1961 the centuries-old problem of how to use infinitesi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Berg, Imme van den (Editor ), Neves, Vitor (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Vienna : Springer Vienna : Imprint: Springer, 2007.
Edición:1st ed. 2007.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-211-49905-4
003 DE-He213
005 20220116010916.0
007 cr nn 008mamaa
008 100301s2007 au | s |||| 0|eng d
020 |a 9783211499054  |9 978-3-211-49905-4 
024 7 |a 10.1007/978-3-211-49905-4  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
245 1 4 |a The Strength of Nonstandard Analysis  |h [electronic resource] /  |c edited by Imme van den Berg, Vitor Neves. 
250 |a 1st ed. 2007. 
264 1 |a Vienna :  |b Springer Vienna :  |b Imprint: Springer,  |c 2007. 
300 |a XX, 401 p. 16 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Foundations -- The strength of nonstandard analysis -- The virtue of simplicity -- Analysis of various practices of referring in classical or non standard mathematics -- Stratified analysis? -- ERNA at work -- The Sousa Pinto approach to nonstandard generalised functions -- Neutrices in more dimensions -- Number theory -- Nonstandard methods for additive and combinatorial number theory. A survey -- Nonstandard methods and the Erd?s-Turán conjecture -- Statistics, probability and measures -- Nonstandard likelihood ratio test in exponential families -- A finitary approach for the representation of the infinitesimal generator of a markovian semigroup -- On two recent applications of nonstandard analysis to the theory of financial markets -- Quantum Bernoulli experiments and quantum stochastic processes -- Applications of rich measure spaces formed from nonstandard models -- More on S-measures -- A Radon-Nikodým theorem for a vector-valued reference measure -- Differentiability of Loeb measures -- Differential systems and equations -- The power of Gâteaux differentiability -- Nonstandard Palais-Smale conditions -- Averaging for ordinary differential equations and functional differential equations -- Path-space measure for stochastic differential equation with a coefficient of polynomial growth -- Optimal control for Navier-Stokes equations -- Local-in-time existence of strong solutions of the n-dimensional Burgers equation via discretizations -- Infinitesimals and education -- Calculus with infinitesimals -- Pre-University Analysis. 
520 |a Nonstandard Analysis enhances mathematical reasoning by introducing new ways of expression and deduction. Distinguishing between standard and nonstandard mathematical objects, its inventor, the eminent mathematician Abraham Robinson, settled in 1961 the centuries-old problem of how to use infinitesimals correctly in analysis. Having also worked as an engineer, he saw not only that his method greatly simplified mathematically proving and teaching, but also served as a powerful tool in modelling, analyzing and solving problems in the applied sciences, among others by effective rescaling and by infinitesimal discretizations. This book reflects the progress made in the forty years since the appearance of Robinson's revolutionary book Nonstandard Analysis: in the foundations of mathematics and logic, number theory, statistics and probability, in ordinary, partial and stochastic differential equations and in education. The contributions are clear and essentially self-contained. 
650 0 |a Mathematical analysis. 
650 0 |a Mathematical logic. 
650 0 |a Probabilities. 
650 0 |a Differential equations. 
650 0 |a Number theory. 
650 0 |a Mathematics. 
650 0 |a History. 
650 1 4 |a Analysis. 
650 2 4 |a Mathematical Logic and Foundations. 
650 2 4 |a Probability Theory. 
650 2 4 |a Differential Equations. 
650 2 4 |a Number Theory. 
650 2 4 |a History of Mathematical Sciences. 
700 1 |a Berg, Imme van den.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Neves, Vitor.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783211100592 
776 0 8 |i Printed edition:  |z 9783211998922 
776 0 8 |i Printed edition:  |z 9783211499047 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-211-49905-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)