Cargando…

Mathematical Logic Foundations for Information Science /

Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of cl...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Li, Wei (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Springer Basel : Imprint: Birkhäuser, 2014.
Edición:2nd ed. 2014.
Colección:Progress in Computer Science and Applied Logic, 25
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0348-0862-0
003 DE-He213
005 20220115195722.0
007 cr nn 008mamaa
008 141107s2014 sz | s |||| 0|eng d
020 |a 9783034808620  |9 978-3-0348-0862-0 
024 7 |a 10.1007/978-3-0348-0862-0  |2 doi 
050 4 |a QA267-268.5 
072 7 |a UYA  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a UYA  |2 thema 
082 0 4 |a 005.131  |2 23 
100 1 |a Li, Wei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Mathematical Logic  |h [electronic resource] :  |b Foundations for Information Science /  |c by Wei Li. 
250 |a 2nd ed. 2014. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a XIV, 301 p. 13 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Computer Science and Applied Logic,  |x 2297-0584 ;  |v 25 
505 0 |a Preface -- Preface to the Second Edition -- I Elements of Mathematical Logic -- 1 Syntax of First-Order Languages -- 2 Models of First-Order Languages -- 3 Formal Inference Systems -- 4 Computability & Representability -- 5 Gödel Theorems -- II Logical Framework of Scientific Discovery -- 6 Sequences of Formal Theories -- 7 Revision Calculus -- 8 Version Sequences -- 9 Inductive Inference -- 10 Meta-Language Environments -- Appendix 1 Sets and Maps -- Appendix 2 Proof of the Representability Theorem -- Bibliography -- Index. 
520 |a Mathematical logic is a branch of mathematics that takes axiom systems and mathematical proofs as its objects of study. This book shows how it can also provide a foundation for the development of information science and technology. The first five chapters systematically present the core topics of classical mathematical logic, including the syntax and models of first-order languages, formal inference systems, computability and representability, and Gödel's theorems. The last five chapters present extensions and developments of classical mathematical logic, particularly the concepts of version sequences of formal theories and their limits, the system of revision calculus, proschemes (formal descriptions of proof methods and strategies) and their properties, and the theory of inductive inference. All of these themes contribute to a formal theory of axiomatization and its application to the process of developing information technology and scientific theories. The book also describes the paradigm of three kinds of language environments for theories and it presents the basic properties required of a meta-language environment. Finally, the book brings these themes together by describing a workflow for scientific research in the information era in which formal methods, interactive software and human invention are all used to their advantage. The second edition of the book includes major revisions on the proof of the completeness theorem of the Gentzen system and new contents on the logic of scientific discovery, R-calculus without cut, and the operational semantics of program debugging. This book represents a valuable reference for graduate and undergraduate students and researchers in mathematics, information science and technology, and other relevant areas of natural sciences. Its first five chapters serve as an undergraduate text in mathematical logic and the last five chapters are addressed to graduate students in relevant disciplines. 
650 0 |a Machine theory. 
650 0 |a Mathematical logic. 
650 1 4 |a Formal Languages and Automata Theory. 
650 2 4 |a Mathematical Logic and Foundations. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034808637 
776 0 8 |i Printed edition:  |z 9783034808613 
830 0 |a Progress in Computer Science and Applied Logic,  |x 2297-0584 ;  |v 25 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0348-0862-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)