Cargando…

Variable Lebesgue Spaces and Hyperbolic Systems

This book targets graduate students and researchers who want to learn about Lebesgue spaces and solutions to hyperbolic equations. It is divided into two parts. Part 1 provides an introduction to the theory of variable Lebesgue spaces: Banach function spaces like the classical Lebesgue spaces but wi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Cruz-Uribe, David (Autor), Fiorenza, Alberto (Autor), Ruzhansky, Michael (Autor), Wirth, Jens (Autor)
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Tikhonov, Sergey (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Springer Basel : Imprint: Birkhäuser, 2014.
Edición:1st ed. 2014.
Colección:Advanced Courses in Mathematics - CRM Barcelona,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0348-0840-8
003 DE-He213
005 20220118111737.0
007 cr nn 008mamaa
008 140722s2014 sz | s |||| 0|eng d
020 |a 9783034808408  |9 978-3-0348-0840-8 
024 7 |a 10.1007/978-3-0348-0840-8  |2 doi 
050 4 |a QA370-380 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.35  |2 23 
100 1 |a Cruz-Uribe, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Variable Lebesgue Spaces and Hyperbolic Systems  |h [electronic resource] /  |c by David Cruz-Uribe, Alberto Fiorenza, Michael Ruzhansky, Jens Wirth ; edited by Sergey Tikhonov. 
250 |a 1st ed. 2014. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a IX, 170 p. 5 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Courses in Mathematics - CRM Barcelona,  |x 2297-0312 
505 0 |a Part I: Introduction to the Variable Lebesgue Spaces -- Introduction and motivation -- Properties of variable Lebesgue spaces -- The Hardy-Littlewood maximal operator -- Extrapolation in variable Lebesgue spaces -- Part II: Asymptotic Behaviour of Solutions to Hyperbolic Equations and Systems -- Equations with constant coefficients -- Some interesting model cases -- Time-dependent hyperbolic systems -- Effective lower order perturbations -- Examples and counter-examples -- Related topics.    . 
520 |a This book targets graduate students and researchers who want to learn about Lebesgue spaces and solutions to hyperbolic equations. It is divided into two parts. Part 1 provides an introduction to the theory of variable Lebesgue spaces: Banach function spaces like the classical Lebesgue spaces but with the constant exponent replaced by an exponent function. These spaces arise naturally from the study of partial differential equations and variational integrals with non-standard growth conditions. They have applications to electrorheological fluids in physics and to image reconstruction. After an introduction that sketches history and motivation, the authors develop the function space properties of variable Lebesgue spaces; proofs are modeled on the classical theory. Subsequently, the Hardy-Littlewood maximal operator is discussed. In the last chapter, other operators from harmonic analysis are considered, such as convolution operators and singular integrals. The text is mostly self-contained, with only some more technical proofs and background material omitted. Part 2 gives an overview of the asymptotic properties of solutions to hyperbolic equations and systems with time-dependent coefficients. First, an overview of known results is given for general scalar hyperbolic equations of higher order with constant coefficients. Then strongly hyperbolic systems with time-dependent coefficients are considered. A feature of the described approach is that oscillations in coefficients are allowed. Propagators for the Cauchy problems are constructed as oscillatory integrals by working in appropriate time-frequency symbol classes. A number of examples is considered and the sharpness of results is discussed. An exemplary treatment of dissipative terms shows how effective lower order terms can change asymptotic properties and thus complements the exposition. 
650 0 |a Differential equations. 
650 0 |a Integral equations. 
650 0 |a Special functions. 
650 1 4 |a Differential Equations. 
650 2 4 |a Integral Equations. 
650 2 4 |a Special Functions. 
700 1 |a Fiorenza, Alberto.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Ruzhansky, Michael.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Wirth, Jens.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Tikhonov, Sergey.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034808415 
776 0 8 |i Printed edition:  |z 9783034808392 
830 0 |a Advanced Courses in Mathematics - CRM Barcelona,  |x 2297-0312 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0348-0840-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)