Cargando…

Representations of Linear Operators Between Banach Spaces

The book deals with the representation in series form of compact linear operators acting between Banach spaces, and provides an analogue of the classical Hilbert space results of this nature that have their roots in the work of D. Hilbert, F. Riesz and E. Schmidt. The representation involves a recur...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Edmunds, David E. (Autor), Evans, W. Desmond (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Springer Basel : Imprint: Birkhäuser, 2013.
Edición:1st ed. 2013.
Colección:Operator Theory: Advances and Applications, 238
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0348-0642-8
003 DE-He213
005 20220110193855.0
007 cr nn 008mamaa
008 130903s2013 sz | s |||| 0|eng d
020 |a 9783034806428  |9 978-3-0348-0642-8 
024 7 |a 10.1007/978-3-0348-0642-8  |2 doi 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.724  |2 23 
100 1 |a Edmunds, David E.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Representations of Linear Operators Between Banach Spaces  |h [electronic resource] /  |c by David E. Edmunds, W. Desmond Evans. 
250 |a 1st ed. 2013. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a XI, 152 p. 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Operator Theory: Advances and Applications,  |x 2296-4878 ;  |v 238 
505 0 |a 1 Preliminaries -- 2 Representation of compact linear operators -- 3 Representation of bounded linear operators. 
520 |a The book deals with the representation in series form of compact linear operators acting between Banach spaces, and provides an analogue of the classical Hilbert space results of this nature that have their roots in the work of D. Hilbert, F. Riesz and E. Schmidt. The representation involves a recursively obtained sequence of points on the unit sphere of the initial space and a corresponding sequence of positive numbers that correspond to the eigenvectors and eigenvalues of the map in the Hilbert space case. The lack of orthogonality is partially compensated by the systematic use of polar sets. There are applications to the p-Laplacian and similar nonlinear partial differential equations. Preliminary material is presented in the first chapter, the main results being established in Chapter 2. The final chapter is devoted to the problems encountered when trying to represent non-compact maps. 
650 0 |a Operator theory. 
650 0 |a Differential equations. 
650 1 4 |a Operator Theory. 
650 2 4 |a Differential Equations. 
700 1 |a Evans, W. Desmond.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034806435 
776 0 8 |i Printed edition:  |z 9783034806411 
830 0 |a Operator Theory: Advances and Applications,  |x 2296-4878 ;  |v 238 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0348-0642-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)