Cargando…

Decay of the Fourier Transform Analytic and Geometric Aspects /

The Plancherel formula says that the L2 norm of the function is equal to the L2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions an...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Iosevich, Alex (Autor), Liflyand, Elijah (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Springer Basel : Imprint: Birkhäuser, 2014.
Edición:1st ed. 2014.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0348-0625-1
003 DE-He213
005 20220116033817.0
007 cr nn 008mamaa
008 141001s2014 sz | s |||| 0|eng d
020 |a 9783034806251  |9 978-3-0348-0625-1 
024 7 |a 10.1007/978-3-0348-0625-1  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Iosevich, Alex.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Decay of the Fourier Transform  |h [electronic resource] :  |b Analytic and Geometric Aspects /  |c by Alex Iosevich, Elijah Liflyand. 
250 |a 1st ed. 2014. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a XII, 222 p. 5 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Foreword -- Introduction -- Chapter 1. Basic properties of the Fourier transform -- Chapter 2. Oscillatory integrals and Fourier transforms in one variable -- Chapter 3. The Fourier transform of an oscillating function -- Chapter 4. The Fourier transform of a radial function -- Chapter 5. Multivariate extensions -- Appendix -- Bibliography. 
520 |a The Plancherel formula says that the L2 norm of the function is equal to the L2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original L2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration. 
650 0 |a Mathematical analysis. 
650 0 |a Fourier analysis. 
650 1 4 |a Analysis. 
650 2 4 |a Fourier Analysis. 
700 1 |a Liflyand, Elijah.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034806268 
776 0 8 |i Printed edition:  |z 9783034806244 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0348-0625-1  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)