Cargando…

Elliptic Curves, Hilbert Modular Forms and Galois Deformations

The notes in this volume correspond to advanced courses held at the Centre de Recerca Matemàtica as part of the research program in Arithmetic Geometry in the 2009-2010 academic year. The notes by Laurent Berger provide an introduction to p-adic Galois representations and Fontaine rings, which are...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Berger, Laurent (Autor), Böckle, Gebhard (Autor), Dembélé, Lassina (Autor), Dimitrov, Mladen (Autor), Dokchitser, Tim (Autor), Voight, John (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Springer Basel : Imprint: Birkhäuser, 2013.
Edición:1st ed. 2013.
Colección:Advanced Courses in Mathematics - CRM Barcelona,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0348-0618-3
003 DE-He213
005 20220116072052.0
007 cr nn 008mamaa
008 130614s2013 sz | s |||| 0|eng d
020 |a 9783034806183  |9 978-3-0348-0618-3 
024 7 |a 10.1007/978-3-0348-0618-3  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Berger, Laurent.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Elliptic Curves, Hilbert Modular Forms and Galois Deformations  |h [electronic resource] /  |c by Laurent Berger, Gebhard Böckle, Lassina Dembélé, Mladen Dimitrov, Tim Dokchitser, John Voight. 
250 |a 1st ed. 2013. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2013. 
300 |a XII, 249 p. 11 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advanced Courses in Mathematics - CRM Barcelona,  |x 2297-0312 
505 0 |a Part I: Galois Deformations -- On p-adic Galois Representations -- Deformations of Galois Representations -- Part II: Hilbert Modular Forms -- Arithmetic Aspects of Hilbert Modular Forms and Varieties -- Explicit Methods for Hilbert Modular Forms -- Part III: Elliptic Curves -- Notes on the Parity Conjecture. 
520 |a The notes in this volume correspond to advanced courses held at the Centre de Recerca Matemàtica as part of the research program in Arithmetic Geometry in the 2009-2010 academic year. The notes by Laurent Berger provide an introduction to p-adic Galois representations and Fontaine rings, which are especially useful for describing many local deformation rings at p that arise naturally in Galois deformation theory. The notes by Gebhard Böckle offer a comprehensive course on Galois deformation theory, starting from the foundational results of Mazur and discussing in detail the theory of pseudo-representations and their deformations, local deformations at places l ≠ p and local deformations at p which are flat. In the last section,the results of Böckle and Kisin on presentations of global deformation rings over local ones are discussed. The notes by Mladen Dimitrov present the basics of the arithmetic theory of Hilbert modular forms and varieties, with an emphasis on the study of the images of the attached Galois representations, on modularity lifting theorems over totally real number fields, and on the cohomology of Hilbert modular varieties with integral coefficients.  The notes by Lassina Dembélé and John Voight describe methods for performing explicit computations in spaces of Hilbert modular forms. These methods depend on the Jacquet-Langlands correspondence and on computations in spaces of quaternionic modular forms, both for the case of definite and indefinite quaternion algebras. Several examples are given, and applications to modularity of Galois representations are discussed.  The notes by Tim Dokchitser describe the proof, obtained by the author in a joint project with Vladimir Dokchitser, of the parity conjecture for elliptic curves over number fields under the assumption of finiteness of the Tate-Shafarevich group. The statement of the Birch and Swinnerton-Dyer conjecture is included, as well as a detailed study of local and global root numbers of elliptic curves and their classification. 
650 0 |a Number theory. 
650 0 |a Algebraic geometry. 
650 0 |a Algebra. 
650 1 4 |a Number Theory. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Algebra. 
700 1 |a Böckle, Gebhard.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Dembélé, Lassina.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Dimitrov, Mladen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Dokchitser, Tim.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Voight, John.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034806190 
776 0 8 |i Printed edition:  |z 9783034806176 
830 0 |a Advanced Courses in Mathematics - CRM Barcelona,  |x 2297-0312 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0348-0618-3  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)