Cargando…

The Localization Problem in Index Theory of Elliptic Operators

This book deals with the localization approach to the index problem for elliptic operators. Localization ideas have been widely used for solving various specific index problems for a long time, but the fact that there is actually a fundamental localization principle underlying all these solutions ha...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Nazaikinskii, Vladimir (Autor), Schulze, Bert-Wolfgang (Autor), Sternin, Boris (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Springer Basel : Imprint: Birkhäuser, 2014.
Edición:1st ed. 2014.
Colección:Pseudo-Differential Operators, Theory and Applications, 10
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0348-0510-0
003 DE-He213
005 20220112144531.0
007 cr nn 008mamaa
008 131125s2014 sz | s |||| 0|eng d
020 |a 9783034805100  |9 978-3-0348-0510-0 
024 7 |a 10.1007/978-3-0348-0510-0  |2 doi 
050 4 |a QA614-614.97 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 514.74  |2 23 
100 1 |a Nazaikinskii, Vladimir.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Localization Problem in Index Theory of Elliptic Operators  |h [electronic resource] /  |c by Vladimir Nazaikinskii, Bert-Wolfgang Schulze, Boris Sternin. 
250 |a 1st ed. 2014. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a VIII, 117 p. 38 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Pseudo-Differential Operators, Theory and Applications,  |x 2297-0363 ;  |v 10 
505 0 |a Preface -- Introduction -- 0.1 Basics of Elliptic Theory -- 0.2 Surgery and the Superposition Principle -- 0.3 Examples and Applications -- 0.4 Bibliographical Remarks -- Part I: Superposition Principle -- 1 Superposition Principle for the Relative Index -- 1.1 Collar Spaces -- 1.2 Proper Operators and Fredholm Operators -- 1.3 Superposition Principle -- 2 Superposition Principle for K-Homology -- 2.1 Preliminaries -- 2.2 Fredholm Modules and K-Homology -- 2.3 Superposition Principle -- 2.4 Fredholm Modules and Elliptic Operators -- 3 Superposition Principle for KK-Theory -- 3.1 Preliminaries -- 3.2 Hilbert Modules, Kasparov Modules, and KK -- 3.3 Superposition Principle -- Part II: Examples -- 4 Elliptic Operators on Noncompact Manifolds -- 4.1 Gromov-Lawson Theorem -- 4.2 Bunke Theorem -- 4.3 Roe's Relative Index Construction -- 5 Applications to Boundary Value Problems -- 5.1 Preliminaries -- 5.2 Agranovich-Dynin Theorem -- 5.3 Agranovich Theorem -- 5.4 Bojarski Theorem and Its Generalizations -- 5.5 Boundary Value Problems with Symmetric Conormal Symbol -- 6 Spectral Flow for Families of Dirac Type Operators -- 6.1 Statement of the Problem -- 6.2 Simple Example -- 6.3 Formula for the Spectral Flow -- 6.4 Computation of the Spectral Flow for a Graphene Sheet -- Bibliography. 
520 |a This book deals with the localization approach to the index problem for elliptic operators. Localization ideas have been widely used for solving various specific index problems for a long time, but the fact that there is actually a fundamental localization principle underlying all these solutions has mostly passed unnoticed. The ignorance of this general principle has often necessitated using various artificial tricks and hindered the solution of important new problems in index theory. So far, the localization principle has scarcely been covered in journal papers. The present book is intended to fill this gap. Both the general localization principle and its applications to specific problems, old and new, are covered. Concisely and clearly written, this monograph includes numerous figures helping the reader to visualize the material. The Localization Problem in Index Theory of Elliptic Operators will be of interest to researchers as well as graduate and postgraduate students specializing in differential equations and related topics. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 0 |a K-theory. 
650 0 |a Functional analysis. 
650 0 |a Differential equations. 
650 1 4 |a Global Analysis and Analysis on Manifolds. 
650 2 4 |a K-Theory. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Differential Equations. 
700 1 |a Schulze, Bert-Wolfgang.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Sternin, Boris.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034805117 
776 0 8 |i Printed edition:  |z 9783034805094 
830 0 |a Pseudo-Differential Operators, Theory and Applications,  |x 2297-0363 ;  |v 10 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0348-0510-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)