Functional Analysis in Asymmetric Normed Spaces
An asymmetric norm is a positive definite sublinear functional p on a real vector space X. The topology generated by the asymmetric norm p is translation invariant so that the addition is continuous, but the asymmetry of the norm implies that the multiplication by scalars is continuous only when res...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | Cobzas, Stefan (Autor) |
Autor Corporativo: | SpringerLink (Online service) |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Basel :
Springer Basel : Imprint: Birkhäuser,
2013.
|
Edición: | 1st ed. 2013. |
Colección: | Frontiers in Mathematics,
|
Temas: | |
Acceso en línea: | Texto Completo |
Ejemplares similares
-
Open Problems in the Geometry and Analysis of Banach Spaces
por: Guirao, Antonio J., et al.
Publicado: (2016) -
Lectures on Functional Analysis and the Lebesgue Integral
por: Komornik, Vilmos
Publicado: (2016) -
Topological Fixed Point Theory for Singlevalued and Multivalued Mappings and Applications
por: Ben Amar, Afif, et al.
Publicado: (2016) -
Descriptive Topology and Functional Analysis In Honour of Jerzy Kakol's 60th Birthday /
Publicado: (2014) -
Distributions Theory and Applications /
por: Duistermaat, J.J, et al.
Publicado: (2010)