Cargando…

Yamabe-type Equations on Complete, Noncompact Manifolds

The aim of this monograph is to present a self-contained introduction to some geometric and analytic aspects of the Yamabe problem. The book also describes a wide range of methods and techniques that can be successfully applied to nonlinear differential equations in particularly challenging situatio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Mastrolia, Paolo (Autor), Rigoli, Marco (Autor), Setti, Alberto G. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Springer Basel : Imprint: Birkhäuser, 2012.
Edición:1st ed. 2012.
Colección:Progress in Mathematics, 302
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0348-0376-2
003 DE-He213
005 20220118202915.0
007 cr nn 008mamaa
008 120730s2012 sz | s |||| 0|eng d
020 |a 9783034803762  |9 978-3-0348-0376-2 
024 7 |a 10.1007/978-3-0348-0376-2  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Mastrolia, Paolo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Yamabe-type Equations on Complete, Noncompact Manifolds  |h [electronic resource] /  |c by Paolo Mastrolia, Marco Rigoli, Alberto G Setti. 
250 |a 1st ed. 2012. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2012. 
300 |a VIII, 260 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 2296-505X ;  |v 302 
505 0 |a Introduction -- 1 Some Riemannian Geometry -- 2 Pointwise conformal metrics -- 3 General nonexistence results -- 4 A priori estimates -- 5 Uniqueness -- 6 Existence -- 7 Some special cases -- References -- Index. 
520 |a The aim of this monograph is to present a self-contained introduction to some geometric and analytic aspects of the Yamabe problem. The book also describes a wide range of methods and techniques that can be successfully applied to nonlinear differential equations in particularly challenging situations. Such situations occur where the lack of compactness, symmetry and homogeneity prevents the use of more standard tools typically used in compact situations or for the Euclidean setting. The work is written in an easy style that makes it accessible even to non-specialists. After a self-contained treatment of the geometric tools used in the book, readers are introduced to the main subject by means of a concise but clear study of some aspects of the Yamabe problem on compact manifolds. This study provides the motivation and geometrical feeling for the subsequent part of the work. In the main body of the book, it is shown how the geometry and the analysis of nonlinear partial differential equations blend together to give up-to-date results on existence, nonexistence, uniqueness and a priori estimates for solutions of general Yamabe-type equations and inequalities on complete, non-compact Riemannian manifolds. 
650 0 |a Geometry, Differential. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Differential Geometry. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
700 1 |a Rigoli, Marco.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Setti, Alberto G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034803779 
776 0 8 |i Printed edition:  |z 9783034807913 
776 0 8 |i Printed edition:  |z 9783034803755 
830 0 |a Progress in Mathematics,  |x 2296-505X ;  |v 302 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0348-0376-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)