Cargando…

Sharp Martingale and Semimartingale Inequalities

This monograph presents a unified approach to a certain class of semimartingale inequalities, which can be regarded as probabilistic extensions of classical estimates for conjugate harmonic functions on the unit disc. The approach, which has its roots in the seminal works of Burkholder in the 1980s,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Osękowski, Adam (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Springer Basel : Imprint: Birkhäuser, 2012.
Edición:1st ed. 2012.
Colección:Monografie Matematyczne, 72
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0348-0370-0
003 DE-He213
005 20220119060514.0
007 cr nn 008mamaa
008 120814s2012 sz | s |||| 0|eng d
020 |a 9783034803700  |9 978-3-0348-0370-0 
024 7 |a 10.1007/978-3-0348-0370-0  |2 doi 
050 4 |a QA273.A1-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Osękowski, Adam.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Sharp Martingale and Semimartingale Inequalities  |h [electronic resource] /  |c by Adam Osękowski. 
250 |a 1st ed. 2012. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2012. 
300 |a XII, 464 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Monografie Matematyczne,  |x 2297-0274 ;  |v 72 
505 0 |a Preface.- 1. Introduction.- 2. Burkholder's method.- 3. Martingale inequalities in discrete time.- 4. Sub- and supermartingale inequalities in discrete time.- 5. Inequalities in continuous time.- 6. Inequalities for orthogonal semimartingales.- 7. Maximal inequalities.- 8. Square function inequalities -- Appendix -- Bibliography. 
520 |a This monograph presents a unified approach to a certain class of semimartingale inequalities, which can be regarded as probabilistic extensions of classical estimates for conjugate harmonic functions on the unit disc. The approach, which has its roots in the seminal works of Burkholder in the 1980s, makes it possible to deduce a given inequality for semimartingales from the existence of a certain special function with some convex-type properties. Remarkably, an appropriate application of the method leads to the sharp version of the estimate under investigation, which is particularly important for applications. These include the theory of quasiregular mappings (with major implications for the geometric function theory); the boundedness of two-dimensional Hilbert transforms and a more general class of Fourier multipliers; the theory of rank-one convex and quasiconvex functions; and more. The book is divided into a number of distinct parts. In the introductory chapter we present the motivation for the results and relate them to some classical problems in harmonic analysis. The next part contains a general description of the method, which is applied in subsequent chapters to the study of sharp estimates for discrete-time martingales; discrete-time sub- and supermartingales; continuous time processes; and the square and maximal functions. Each chapter contains additional bibliographical notes included for reference purposes. 
650 0 |a Probabilities. 
650 0 |a Potential theory (Mathematics). 
650 0 |a Functional analysis. 
650 1 4 |a Probability Theory. 
650 2 4 |a Potential Theory. 
650 2 4 |a Functional Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034803717 
776 0 8 |i Printed edition:  |z 9783034807494 
776 0 8 |i Printed edition:  |z 9783034803694 
830 0 |a Monografie Matematyczne,  |x 2297-0274 ;  |v 72 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0348-0370-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)