Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change
In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these the...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Basel :
Springer Basel : Imprint: Birkhäuser,
2012.
|
Edición: | 1st ed. 2012. |
Colección: | Progress in Mathematics,
298 |
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Chapter 1. Introduction
- Chapter 2. Review of Chains and Cochains
- Chapter 3. Review of Intersection Homology and Cohomology
- Chapter 4. Review of Arithmetic Quotients
- Chapter 5. Generalities on Hilbert Modular Forms and Varieties
- Chapter 6. Automorphic vector bundles and local systems
- Chapter 7. The automorphic description of intersection cohomology
- Chapter 8. Hilbert Modular Forms with Coefficients in a Hecke Module
- Chapter 9. Explicit construction of cycles
- Chapter 10. The full version of Theorem 1.3
- Chapter 11. Eisenstein Series with Coefficients in Intersection Homology
- Appendix A. Proof of Proposition 2.4
- Appendix B. Recollections on Orbifolds
- Appendix C. Basic adèlic facts
- Appendix D. Fourier expansions of Hilbert modular forms
- Appendix E. Review of Prime Degree Base Change for GL2
- Bibliography.