Cargando…

Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change

In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these the...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Getz, Jayce (Autor), Goresky, Mark (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Springer Basel : Imprint: Birkhäuser, 2012.
Edición:1st ed. 2012.
Colección:Progress in Mathematics, 298
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0348-0351-9
003 DE-He213
005 20220114130009.0
007 cr nn 008mamaa
008 120328s2012 sz | s |||| 0|eng d
020 |a 9783034803519  |9 978-3-0348-0351-9 
024 7 |a 10.1007/978-3-0348-0351-9  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
100 1 |a Getz, Jayce.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change  |h [electronic resource] /  |c by Jayce Getz, Mark Goresky. 
250 |a 1st ed. 2012. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2012. 
300 |a XIV, 258 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 2296-505X ;  |v 298 
505 0 |a Chapter 1. Introduction -- Chapter 2. Review of Chains and Cochains -- Chapter 3. Review of Intersection Homology and Cohomology -- Chapter 4. Review of Arithmetic Quotients -- Chapter 5. Generalities on Hilbert Modular Forms and Varieties -- Chapter 6. Automorphic vector bundles and local systems -- Chapter 7. The automorphic description of intersection cohomology -- Chapter 8. Hilbert Modular Forms with Coefficients in a Hecke Module -- Chapter 9. Explicit construction of cycles -- Chapter 10. The full version of Theorem 1.3 -- Chapter 11. Eisenstein Series with Coefficients in Intersection Homology -- Appendix A. Proof of Proposition 2.4 -- Appendix B. Recollections on Orbifolds -- Appendix C. Basic adèlic facts -- Appendix D. Fourier expansions of Hilbert modular forms -- Appendix E. Review of Prime Degree Base Change for GL2 -- Bibliography. 
520 |a In the 1970s Hirzebruch and Zagier produced elliptic modular forms with coefficients in the homology of a Hilbert modular surface. They then computed the Fourier coefficients of these forms in terms of period integrals and L-functions. In this book the authors take an alternate approach to these theorems and generalize them to the setting of Hilbert modular varieties of arbitrary dimension. The approach is conceptual and uses tools that were not available to Hirzebruch and Zagier, including intersection homology theory, properties of modular cycles, and base change. Automorphic vector bundles, Hecke operators and Fourier coefficients of modular forms are presented both in the classical and adèlic settings. The book should provide a foundation for approaching similar questions for other locally symmetric spaces. 
650 0 |a Number theory. 
650 0 |a Algebraic geometry. 
650 1 4 |a Number Theory. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Goresky, Mark.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034807951 
776 0 8 |i Printed edition:  |z 9783034803526 
776 0 8 |i Printed edition:  |z 9783034803502 
830 0 |a Progress in Mathematics,  |x 2296-505X ;  |v 298 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0348-0351-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)