|
|
|
|
LEADER |
00000nam a22000005i 4500 |
001 |
978-3-0348-0163-8 |
003 |
DE-He213 |
005 |
20220118114256.0 |
007 |
cr nn 008mamaa |
008 |
111115s2012 sz | s |||| 0|eng d |
020 |
|
|
|a 9783034801638
|9 978-3-0348-0163-8
|
024 |
7 |
|
|a 10.1007/978-3-0348-0163-8
|2 doi
|
050 |
|
4 |
|a QC19.2-20.85
|
072 |
|
7 |
|a PHU
|2 bicssc
|
072 |
|
7 |
|a SCI040000
|2 bisacsh
|
072 |
|
7 |
|a PHU
|2 thema
|
082 |
0 |
4 |
|a 530.15
|2 23
|
100 |
1 |
|
|a Mazzucchelli, Marco.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Critical Point Theory for Lagrangian Systems
|h [electronic resource] /
|c by Marco Mazzucchelli.
|
250 |
|
|
|a 1st ed. 2012.
|
264 |
|
1 |
|a Basel :
|b Springer Basel :
|b Imprint: Birkhäuser,
|c 2012.
|
300 |
|
|
|a XII, 188 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Progress in Mathematics,
|x 2296-505X ;
|v 293
|
505 |
0 |
|
|a 1 Lagrangian and Hamiltonian systems -- 2 Functional setting for the Lagrangian action -- 3 Discretizations -- 4 Local homology and Hilbert subspaces -- 5 Periodic orbits of Tonelli Lagrangian systems -- A An overview of Morse theory.-Bibliography -- List of symbols -- Index.
|
520 |
|
|
|a Lagrangian systems constitute a very important and old class in dynamics. Their origin dates back to the end of the eighteenth century, with Joseph-Louis Lagrange's reformulation of classical mechanics. The main feature of Lagrangian dynamics is its variational flavor: orbits are extremal points of an action functional. The development of critical point theory in the twentieth century provided a powerful machinery to investigate existence and multiplicity questions for orbits of Lagrangian systems. This monograph gives a modern account of the application of critical point theory, and more specifically Morse theory, to Lagrangian dynamics, with particular emphasis toward existence and multiplicity of periodic orbits of non-autonomous and time-periodic systems.
|
650 |
|
0 |
|a Mathematical physics.
|
650 |
|
0 |
|a Dynamical systems.
|
650 |
|
0 |
|a Global analysis (Mathematics).
|
650 |
|
0 |
|a Manifolds (Mathematics).
|
650 |
1 |
4 |
|a Mathematical Physics.
|
650 |
2 |
4 |
|a Dynamical Systems.
|
650 |
2 |
4 |
|a Global Analysis and Analysis on Manifolds.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9783034807821
|
776 |
0 |
8 |
|i Printed edition:
|z 9783034801645
|
776 |
0 |
8 |
|i Printed edition:
|z 9783034801621
|
830 |
|
0 |
|a Progress in Mathematics,
|x 2296-505X ;
|v 293
|
856 |
4 |
0 |
|u https://doi.uam.elogim.com/10.1007/978-3-0348-0163-8
|z Texto Completo
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-SXMS
|
950 |
|
|
|a Mathematics and Statistics (SpringerNature-11649)
|
950 |
|
|
|a Mathematics and Statistics (R0) (SpringerNature-43713)
|