Cargando…

Lecture Notes on Mean Curvature Flow

This book is an introduction to the subject of mean curvature flow of hypersurfaces with special emphasis on the analysis of singularities. This flow occurs in the description of the evolution of numerous physical models where the energy is given by the area of the interfaces. These notes provide a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Mantegazza, Carlo (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Springer Basel : Imprint: Birkhäuser, 2011.
Edición:1st ed. 2011.
Colección:Progress in Mathematics, 290
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0348-0145-4
003 DE-He213
005 20220120214351.0
007 cr nn 008mamaa
008 110726s2011 sz | s |||| 0|eng d
020 |a 9783034801454  |9 978-3-0348-0145-4 
024 7 |a 10.1007/978-3-0348-0145-4  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Mantegazza, Carlo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lecture Notes on Mean Curvature Flow  |h [electronic resource] /  |c by Carlo Mantegazza. 
250 |a 1st ed. 2011. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2011. 
300 |a XII, 168 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 2296-505X ;  |v 290 
505 0 |a Foreword -- Chapter 1. Definition and Short Time Existence -- Chapter 2. Evolution of Geometric Quantities -- Chapter 3. Monotonicity Formula and Type I Singularities -- Chapter 4. Type II Singularities -- Chapter 5. Conclusions and Research Directions -- Appendix A. Quasilinear Parabolic Equations on Manifolds -- Appendix B. Interior Estimates of Ecker and Huisken -- Appendix C. Hamilton's Maximum Principle for Tensors -- Appendix D. Hamilton's Matrix Li-Yau-Harnack Inequality in Rn -- Appendix E. Abresch and Langer Classification of Homothetically Shrinking Closed Curves -- Appendix F. Important Results without Proof in the Book -- Bibliography -- Index. 
520 |a This book is an introduction to the subject of mean curvature flow of hypersurfaces with special emphasis on the analysis of singularities. This flow occurs in the description of the evolution of numerous physical models where the energy is given by the area of the interfaces. These notes provide a detailed discussion of the classical parametric approach (mainly developed by R. Hamilton and G. Huisken). They are well suited for a course at PhD/PostDoc level and can be useful for any researcher interested in a solid introduction to the technical issues of the field. All the proofs are carefully written, often simplified, and contain several comments. Moreover, the author revisited and organized a large amount of material scattered around in literature in the last 25 years. 
650 0 |a Mathematical analysis. 
650 1 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034803403 
776 0 8 |i Printed edition:  |z 9783034801447 
776 0 8 |i Printed edition:  |z 9783034801461 
830 0 |a Progress in Mathematics,  |x 2296-505X ;  |v 290 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0348-0145-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)