Cargando…

Exponentially Convergent Algorithms for Abstract Differential Equations

This book presents new accurate and efficient exponentially convergent methods for abstract differential equations with unbounded operator coefficients in Banach space. These methods are highly relevant for practical scientific computing since the equations under consideration can be seen as the met...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gavrilyuk, Ivan (Autor), Makarov, Volodymyr (Autor), Vasylyk, Vitalii (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Springer Basel : Imprint: Birkhäuser, 2011.
Edición:1st ed. 2011.
Colección:Frontiers in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0348-0119-5
003 DE-He213
005 20220113054100.0
007 cr nn 008mamaa
008 110715s2011 sz | s |||| 0|eng d
020 |a 9783034801195  |9 978-3-0348-0119-5 
024 7 |a 10.1007/978-3-0348-0119-5  |2 doi 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a PB  |2 thema 
082 0 4 |a 510  |2 23 
100 1 |a Gavrilyuk, Ivan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Exponentially Convergent Algorithms for Abstract Differential Equations  |h [electronic resource] /  |c by Ivan Gavrilyuk, Volodymyr Makarov, Vitalii Vasylyk. 
250 |a 1st ed. 2011. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2011. 
300 |a VIII, 180 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8054 
505 0 |a Preface -- 1 Introduction -- 2 Preliminaries -- 3 The first-order equations -- 4 The second-order equations -- Appendix: Tensor-product approximations of the operator exponential -- Bibliography -- Index. 
520 |a This book presents new accurate and efficient exponentially convergent methods for abstract differential equations with unbounded operator coefficients in Banach space. These methods are highly relevant for practical scientific computing since the equations under consideration can be seen as the meta-models of systems of ordinary differential equations (ODE) as well as of partial differential equations (PDEs) describing various applied problems. The framework of functional analysis allows one to obtain very general but at the same time transparent algorithms and mathematical results which then can be applied to mathematical models of the real world. The problem class includes initial value problems (IVP) for first order differential equations with constant and variable unbounded operator coefficients in a Banach space (the heat equation is a simple example), boundary value problems for the second order elliptic differential equation with an operator coefficient (e.g. the Laplace equation), IVPs for the second order strongly damped differential equation as well as exponentially convergent methods to IVPs for the first order nonlinear differential equation with unbounded operator coefficients.  For researchers and students of numerical functional analysis, engineering and other sciences this book provides highly efficient algorithms for the numerical solution of differential equations and applied problems. 
650 0 |a Mathematics. 
650 1 4 |a Mathematics. 
700 1 |a Makarov, Volodymyr.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Vasylyk, Vitalii.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034801188 
776 0 8 |i Printed edition:  |z 9783034801201 
830 0 |a Frontiers in Mathematics,  |x 1660-8054 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0348-0119-5  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)