Cargando…

Noncommutative Functional Calculus Theory and Applications of Slice Hyperholomorphic Functions /

<i>This book presents a functional calculus for <i>n</i>-tuples of not necessarily commuting linear operators. In particular, a functional calculus for quaternionic linear operators is developed. These calculi are based on a new theory of hyperholomorphicity for functions with valu...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Politecnico di Milano, Prof. Fabrizio Colombo (Autor), Sabadini, Irene (Autor), Struppa, Daniele C. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Springer Basel : Imprint: Birkhäuser, 2011.
Edición:1st ed. 2011.
Colección:Progress in Mathematics, 289
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0348-0110-2
003 DE-He213
005 20220402072452.0
007 cr nn 008mamaa
008 110317s2011 sz | s |||| 0|eng d
020 |a 9783034801102  |9 978-3-0348-0110-2 
024 7 |a 10.1007/978-3-0348-0110-2  |2 doi 
050 4 |a QA329-329.9 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT037000  |2 bisacsh 
072 7 |a PBKF  |2 thema 
082 0 4 |a 515.724  |2 23 
100 1 |a Politecnico di Milano, Prof. Fabrizio Colombo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Noncommutative Functional Calculus  |h [electronic resource] :  |b Theory and Applications of Slice Hyperholomorphic Functions /  |c by Prof. Fabrizio Colombo Politecnico di Milano, Irene Sabadini, Daniele C. Struppa. 
250 |a 1st ed. 2011. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2011. 
300 |a VI, 222 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Progress in Mathematics,  |x 2296-505X ;  |v 289 
505 0 |a 1 Introduction -- 2 Slice monogenic functions -- 3 Functional calculus for n-tuples of operators -- 4 Quaternionic Functional Calculus -- 5 Appendix: The Riesz-Dunford functional calculus -- Bibliography -- Index. 
520 |a <i>This book presents a functional calculus for <i>n</i>-tuples of not necessarily commuting linear operators. In particular, a functional calculus for quaternionic linear operators is developed. These calculi are based on a new theory of hyperholomorphicity for functions with values in a Clifford algebra: the so-called slice monogenic functions which are carefully described in the book. In the case of functions with values in the algebra of quaternions these functions are named slice regular functions.</i> <br>  <p>Except for the appendix and the introduction all results are new and appear for the first time organized in a monograph. The material has been carefully prepared to be as self-contained as possible. The intended audience consists of researchers, graduate and postgraduate students interested in operator theory, spectral theory,  hypercomplex analysis, and mathematical physics.</p>. 
650 0 |a Operator theory. 
650 0 |a Functional analysis. 
650 0 |a Functions of complex variables. 
650 1 4 |a Operator Theory. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Functions of a Complex Variable. 
700 1 |a Sabadini, Irene.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Struppa, Daniele C.  |e author.  |0 (orcid)0000-0002-3664-1729  |1 https://orcid.org/0000-0002-3664-1729  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034803243 
776 0 8 |i Printed edition:  |z 9783034801096 
776 0 8 |i Printed edition:  |z 9783034801119 
830 0 |a Progress in Mathematics,  |x 2296-505X ;  |v 289 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0348-0110-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)