Cargando…

Introduction to Hyperfunctions and Their Integral Transforms An Applied and Computational Approach /

This textbook presents an elementary introduction to generalized functions by using Sato's approach of hyperfunctions which is based on complex function theory. This very intuitive and appealing approach has particularly great computational power.   The concept of hyperfunctions and their analy...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Graf, Urs (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2010.
Edición:1st ed. 2010.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0346-0408-6
003 DE-He213
005 20220118120311.0
007 cr nn 008mamaa
008 101226s2010 sz | s |||| 0|eng d
020 |a 9783034604086  |9 978-3-0346-0408-6 
024 7 |a 10.1007/978-3-0346-0408-6  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBKL  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBKL  |2 thema 
082 0 4 |a 515.72  |2 23 
100 1 |a Graf, Urs.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Hyperfunctions and Their Integral Transforms  |h [electronic resource] :  |b An Applied and Computational Approach /  |c by Urs Graf. 
250 |a 1st ed. 2010. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2010. 
300 |a 432 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a to Hyperfunctions -- Analytic Properties -- Laplace Transforms -- Fourier Transforms -- Hilbert Transforms -- Mellin Transforms -- Hankel Transforms. 
520 |a This textbook presents an elementary introduction to generalized functions by using Sato's approach of hyperfunctions which is based on complex function theory. This very intuitive and appealing approach has particularly great computational power.   The concept of hyperfunctions and their analytic properties is introduced and discussed in detail in the first two chapters of the book. Thereafter the focus lies on generalizing the (classical) Laplace, Fourier, Hilbert, Mellin, and Hankel transformations to hyperfunctions. Applications to integral and differential equations and a rich variety of concrete examples accompany the text throughout the book.   Requiring only standard knowledge of the theory of complex variables, the material is easily accessible for advanced undergraduate or graduate students. It serves as well as a reference for researchers in pure and applied mathematics, engineering and physics.  . 
650 0 |a Mathematical analysis. 
650 0 |a Special functions. 
650 0 |a Mathematics-Data processing. 
650 0 |a Fourier analysis. 
650 1 4 |a Integral Transforms and Operational Calculus. 
650 2 4 |a Special Functions. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Fourier Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034604093 
776 0 8 |i Printed edition:  |z 9783034604079 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0346-0408-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)