Cargando…

The Geometry of Filtering

Filtering is the science of nding the law of a process given a partial observation of it. The main objects we study here are di usion processes. These are naturally associated with second-order linear di erential operators which are semi-elliptic and so introduce a possibly degenerate Riemannian str...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Elworthy, K. David (Autor), Le Jan, Yves (Autor), Li, Xue-Mei (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Springer Basel : Imprint: Birkhäuser, 2010.
Edición:1st ed. 2010.
Colección:Frontiers in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0346-0176-4
003 DE-He213
005 20220112193200.0
007 cr nn 008mamaa
008 101127s2010 sz | s |||| 0|eng d
020 |a 9783034601764  |9 978-3-0346-0176-4 
024 7 |a 10.1007/978-3-0346-0176-4  |2 doi 
050 4 |a QA297-299.4 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT021000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
082 0 4 |a 518  |2 23 
100 1 |a Elworthy, K. David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Geometry of Filtering  |h [electronic resource] /  |c by K. David Elworthy, Yves Le Jan, Xue-Mei Li. 
250 |a 1st ed. 2010. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2010. 
300 |a XI, 169 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8054 
505 0 |a Diffusion Operators -- Decomposition of Diffusion Operators -- Equivariant Diffusions on Principal Bundles -- Projectible Diffusion Processes and Markovian Filtering -- Filtering with non-Markovian Observations -- The Commutation Property -- Example: Riemannian Submersions and Symmetric Spaces -- Example: Stochastic Flows -- Appendices. 
520 |a Filtering is the science of nding the law of a process given a partial observation of it. The main objects we study here are di usion processes. These are naturally associated with second-order linear di erential operators which are semi-elliptic and so introduce a possibly degenerate Riemannian structure on the state space. In fact, much of what we discuss is simply about two such operators intertwined by a smooth map, the \projection from the state space to the observations space", and does not involve any stochastic analysis. From the point of view of stochastic processes, our purpose is to present and to study the underlying geometric structure which allows us to perform the ltering in a Markovian framework with the resulting conditional law being that of a Markov process which is time inhomogeneous in general. This geometry is determined by the symbol of the operator on the state space which projects to a symbol on the observation space. The projectible symbol induces a (possibly non-linear and partially de ned) connection which lifts the observation process to the state space and gives a decomposition of the operator on the state space and of the noise. As is standard we can recover the classical ltering theory in which the observations are not usually Markovian by application of the Girsanov- Maruyama-Cameron-Martin Theorem. This structure we have is examined in relation to a number of geometrical topics. 
650 0 |a Numerical analysis. 
650 0 |a Probabilities. 
650 0 |a Geometry, Differential. 
650 0 |a Global analysis (Mathematics). 
650 0 |a Manifolds (Mathematics). 
650 1 4 |a Numerical Analysis. 
650 2 4 |a Probability Theory. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
700 1 |a Le Jan, Yves.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Li, Xue-Mei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034601757 
776 0 8 |i Printed edition:  |z 9783034800822 
830 0 |a Frontiers in Mathematics,  |x 1660-8054 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0346-0176-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)