Cargando…

Flag-transitive Steiner Designs

The characterization of combinatorial or geometric structures in terms of their groups of automorphisms has attracted considerable interest in the last decades and is now commonly viewed as a natural generalization of Felix Klein's Erlangen program(1872).Inaddition,especiallyfor?nitestructures,...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Huber, Michael (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2009.
Edición:1st ed. 2009.
Colección:Frontiers in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0346-0002-6
003 DE-He213
005 20220114011900.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 |a 9783034600026  |9 978-3-0346-0002-6 
024 7 |a 10.1007/978-3-0346-0002-6  |2 doi 
050 4 |a QA639.5-640.7 
050 4 |a QA640.7-640.77 
072 7 |a PBM  |2 bicssc 
072 7 |a PBD  |2 bicssc 
072 7 |a MAT012020  |2 bisacsh 
072 7 |a PBM  |2 thema 
072 7 |a PBD  |2 thema 
082 0 4 |a 516  |2 23 
100 1 |a Huber, Michael.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Flag-transitive Steiner Designs  |h [electronic resource] /  |c by Michael Huber. 
250 |a 1st ed. 2009. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2009. 
300 |a IX, 125 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8054 
505 0 |a Incidence Structures and Steiner Designs -- Permutation Groups and Group Actions -- Number Theoretical Tools -- Highly Symmetric Steiner Designs -- A Census of Highly Symmetric Steiner Designs -- The Classification of Flag-transitive Steiner Quadruple Systems -- The Classification of Flag-transitive Steiner 3-Designs -- The Classification of Flag-transitive Steiner 4-Designs -- The Classification of Flag-transitive Steiner 5-Designs -- The Non-Existence of Flag-transitive Steiner 6-Designs. 
520 |a The characterization of combinatorial or geometric structures in terms of their groups of automorphisms has attracted considerable interest in the last decades and is now commonly viewed as a natural generalization of Felix Klein's Erlangen program(1872).Inaddition,especiallyfor?nitestructures,importantapplications to practical topics such as design theory, coding theory and cryptography have made the ?eld even more attractive. The subject matter of this research monograph is the study and class- cation of ?ag-transitive Steiner designs, that is, combinatorial t-(v,k,1) designs which admit a group of automorphisms acting transitively on incident point-block pairs. As a consequence of the classi?cation of the ?nite simple groups, it has been possible in recent years to characterize Steiner t-designs, mainly for t=2,adm- ting groups of automorphisms with su?ciently strong symmetry properties. For Steiner 2-designs, arguably the most general results have been the classi?cation of all point 2-transitive Steiner 2-designs in 1985 by W. M. Kantor, and the almost complete determination of all ?ag-transitive Steiner 2-designs announced in 1990 byF.Buekenhout,A.Delandtsheer,J.Doyen,P.B.Kleidman,M.W.Liebeck, and J. Saxl. However, despite the classi?cation of the ?nite simple groups, for Steiner t-designs witht> 2 most of the characterizations of these types have remained long-standing challenging problems. Speci?cally, the determination of all ?- transitive Steiner t-designs with 3? t? 6 has been of particular interest and object of research for more than 40 years. 
650 0 |a Convex geometry . 
650 0 |a Discrete geometry. 
650 0 |a Discrete mathematics. 
650 1 4 |a Convex and Discrete Geometry. 
650 2 4 |a Discrete Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034600118 
776 0 8 |i Printed edition:  |z 9783034600019 
830 0 |a Frontiers in Mathematics,  |x 1660-8054 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0346-0002-6  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)