Cargando…

Schwarz-Pick Type Inequalities

This book discusses in detail the extension of the Schwarz-Pick inequality to higher order derivatives of analytic functions with given images. It is the first systematic account of the main results in this area. Recent results in geometric function theory presented here include the attractive steps...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Avkhadiev, Farit G. (Autor), Wirths, Karl-Joachim (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2009.
Edición:1st ed. 2009.
Colección:Frontiers in Mathematics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-0346-0000-2
003 DE-He213
005 20220114011336.0
007 cr nn 008mamaa
008 100301s2009 sz | s |||| 0|eng d
020 |a 9783034600002  |9 978-3-0346-0000-2 
024 7 |a 10.1007/978-3-0346-0000-2  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Avkhadiev, Farit G.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Schwarz-Pick Type Inequalities  |h [electronic resource] /  |c by Farit G. Avkhadiev, Karl-Joachim Wirths. 
250 |a 1st ed. 2009. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2009. 
300 |a VIII, 156 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8054 
505 0 |a Basic coefficient inequalities -- The Poincaré metric -- Basic Schwarz-Pick type inequalities -- Punishing factors for special cases -- Multiply connected domains -- Related results -- Some open problems. 
520 |a This book discusses in detail the extension of the Schwarz-Pick inequality to higher order derivatives of analytic functions with given images. It is the first systematic account of the main results in this area. Recent results in geometric function theory presented here include the attractive steps on coefficient problems from Bieberbach to de Branges, applications of some hyperbolic characteristics of domains via Beardon-Pommerenke's theorem, a new interpretation of coefficient estimates as certain properties of the Poincaré metric, and a successful combination of the classical ideas of Littlewood, Löwner and Teichmüller with modern approaches. The material is complemented with historical remarks on the Schwarz Lemma and a chapter introducing some challenging open problems. The book will be of interest for researchers and postgraduate students in function theory and hyperbolic geometry. 
650 0 |a Mathematical analysis. 
650 1 4 |a Analysis. 
700 1 |a Wirths, Karl-Joachim.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783034600101 
776 0 8 |i Printed edition:  |z 9783764399993 
830 0 |a Frontiers in Mathematics,  |x 1660-8054 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-0346-0000-2  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)