Cargando…

Introductory Tiling Theory for Computer Graphics

Tiling theory is an elegant branch of mathematics that has applications in several areas of computer science. The most immediate application area is graphics, where tiling theory has been used in the contexts of texture generation, sampling theory, remeshing, and of course the generation of decorati...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Kaplan, Craig (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Synthesis Lectures on Computer Graphics and Animation,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-79543-5
003 DE-He213
005 20220601135640.0
007 cr nn 008mamaa
008 220601s2009 sz | s |||| 0|eng d
020 |a 9783031795435  |9 978-3-031-79543-5 
024 7 |a 10.1007/978-3-031-79543-5  |2 doi 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a PB  |2 thema 
082 0 4 |a 510  |2 23 
100 1 |a Kaplan, Craig.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introductory Tiling Theory for Computer Graphics  |h [electronic resource] /  |c by Craig Kaplan. 
250 |a 1st ed. 2009. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2009. 
300 |a X, 103 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Synthesis Lectures on Computer Graphics and Animation,  |x 1933-9003 
505 0 |a Introduction -- Tiling Basics -- Symmetry -- Tilings by Polygons -- Isohedral Tilings -- Nonperiodic and Aperiodic Tilings -- Survey. 
520 |a Tiling theory is an elegant branch of mathematics that has applications in several areas of computer science. The most immediate application area is graphics, where tiling theory has been used in the contexts of texture generation, sampling theory, remeshing, and of course the generation of decorative patterns. The combination of a solid theoretical base (complete with tantalizing open problems), practical algorithmic techniques, and exciting applications make tiling theory a worthwhile area of study for practitioners and students in computer science. This synthesis lecture introduces the mathematical and algorithmic foundations of tiling theory to a computer graphics audience. The goal is primarily to introduce concepts and terminology, clear up common misconceptions, and state and apply important results. The book also describes some of the algorithms and data structures that allow several aspects of tiling theory to be used in practice. Table of Contents: Introduction / Tiling Basics / Symmetry / Tilings by Polygons / Isohedral Tilings / Nonperiodic and Aperiodic Tilings / Survey. 
650 0 |a Mathematics. 
650 0 |a Image processing-Digital techniques. 
650 0 |a Computer vision. 
650 1 4 |a Mathematics. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031795428 
776 0 8 |i Printed edition:  |z 9783031795442 
830 0 |a Synthesis Lectures on Computer Graphics and Animation,  |x 1933-9003 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-031-79543-5  |z Texto Completo 
912 |a ZDB-2-SXSC 
950 |a Synthesis Collection of Technology (R0) (SpringerNature-85007)