Cargando…

Jordan Canonical Form Theory and Practice /

Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Weintraub, Steven H. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Synthesis Lectures on Mathematics & Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-02398-9
003 DE-He213
005 20230112134632.0
007 cr nn 008mamaa
008 220601s2009 sz | s |||| 0|eng d
020 |a 9783031023989  |9 978-3-031-02398-9 
024 7 |a 10.1007/978-3-031-02398-9  |2 doi 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a PB  |2 thema 
082 0 4 |a 510  |2 23 
100 1 |a Weintraub, Steven H.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Jordan Canonical Form  |h [electronic resource] :  |b Theory and Practice /  |c by Steven H. Weintraub. 
250 |a 1st ed. 2009. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2009. 
300 |a XI, 96 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Synthesis Lectures on Mathematics & Statistics,  |x 1938-1751 
505 0 |a Jordan Canonical Form -- Solving Systems of Linear Differential Equations -- Background Results: Bases, Coordinates, and Matrices -- Properties of the Complex Exponential. 
520 |a Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T : V → V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1. We further present an algorithm to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J, and a refinement, the labeled eigenstructure picture (ℓESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide numerous exercises for the reader. Table of Contents: Fundamentals on Vector Spaces and Linear Transformations / The Structure of a Linear Transformation / An Algorithm for Jordan Canonical Form and Jordan Basis. 
650 0 |a Mathematics. 
650 0 |a Statistics . 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Statistics. 
650 2 4 |a Engineering Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031012709 
776 0 8 |i Printed edition:  |z 9783031035265 
830 0 |a Synthesis Lectures on Mathematics & Statistics,  |x 1938-1751 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-031-02398-9  |z Texto Completo 
912 |a ZDB-2-SXSC 
950 |a Synthesis Collection of Technology (R0) (SpringerNature-85007)