Cargando…

The Geometry of Walker Manifolds

This book, which focuses on the study of curvature, is an introduction to various aspects of pseudo-Riemannian geometry. We shall use Walker manifolds (pseudo-Riemannian manifolds which admit a non-trivial parallel null plane field) to exemplify some of the main differences between the geometry of R...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Gilkey, Peter (Autor), Brozos-Vázquez, Miguel (Autor), Garcia-Rio, Eduardo (Autor), Nikčević, Stana (Autor), Vásquez-Lorenzo, Ramón (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Synthesis Lectures on Mathematics & Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-02397-2
003 DE-He213
005 20220712201654.0
007 cr nn 008mamaa
008 220601s2009 sz | s |||| 0|eng d
020 |a 9783031023972  |9 978-3-031-02397-2 
024 7 |a 10.1007/978-3-031-02397-2  |2 doi 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a PB  |2 thema 
082 0 4 |a 510  |2 23 
100 1 |a Gilkey, Peter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The Geometry of Walker Manifolds  |h [electronic resource] /  |c by Peter Gilkey, Miguel Brozos-Vázquez, Eduardo Garcia-Rio, Stana Nikčević, Ramón Vásquez-Lorenzo. 
250 |a 1st ed. 2009. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2009. 
300 |a XVII, 159 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Synthesis Lectures on Mathematics & Statistics,  |x 1938-1751 
505 0 |a Basic Algebraic Notions -- Basic Geometrical Notions -- Walker Structures -- Three-Dimensional Lorentzian Walker Manifolds -- Four-Dimensional Walker Manifolds -- The Spectral Geometry of the Curvature Tensor -- Hermitian Geometry -- Special Walker Manifolds. 
520 |a This book, which focuses on the study of curvature, is an introduction to various aspects of pseudo-Riemannian geometry. We shall use Walker manifolds (pseudo-Riemannian manifolds which admit a non-trivial parallel null plane field) to exemplify some of the main differences between the geometry of Riemannian manifolds and the geometry of pseudo-Riemannian manifolds and thereby illustrate phenomena in pseudo-Riemannian geometry that are quite different from those which occur in Riemannian geometry, i.e. for indefinite as opposed to positive definite metrics. Indefinite metrics are important in many diverse physical contexts: classical cosmological models (general relativity) and string theory to name but two. Walker manifolds appear naturally in numerous physical settings and provide examples of extremal mathematical situations as will be discussed presently. To describe the geometry of a pseudo-Riemannian manifold, one must first understand the curvature of the manifold. We shall analyze a wide variety of curvature properties and we shall derive both geometrical and topological results. Special attention will be paid to manifolds of dimension 3 as these are quite tractable. We then pass to the 4 dimensional setting as a gateway to higher dimensions. Since the book is aimed at a very general audience (and in particular to an advanced undergraduate or to a beginning graduate student), no more than a basic course in differential geometry is required in the way of background. To keep our treatment as self-contained as possible, we shall begin with two elementary chapters that provide an introduction to basic aspects of pseudo-Riemannian geometry before beginning on our study of Walker geometry. An extensive bibliography is provided for further reading. Math subject classifications : Primary: 53B20 -- (PACS: 02.40.Hw) Secondary: 32Q15, 51F25, 51P05, 53B30, 53C50, 53C80, 58A30, 83F05, 85A04 Table of Contents: Basic Algebraic Notions / Basic Geometrical Notions / Walker Structures / Three-Dimensional Lorentzian Walker Manifolds / Four-Dimensional Walker Manifolds / The Spectral Geometry of the Curvature Tensor / Hermitian Geometry / Special Walker Manifolds. 
650 0 |a Mathematics. 
650 0 |a Statistics . 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Statistics. 
650 2 4 |a Engineering Mathematics. 
700 1 |a Brozos-Vázquez, Miguel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Garcia-Rio, Eduardo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Nikčević, Stana.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Vásquez-Lorenzo, Ramón.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031012693 
776 0 8 |i Printed edition:  |z 9783031035258 
830 0 |a Synthesis Lectures on Mathematics & Statistics,  |x 1938-1751 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-031-02397-2  |z Texto Completo 
912 |a ZDB-2-SXSC 
950 |a Synthesis Collection of Technology (R0) (SpringerNature-85007)