Cargando…

Jordan Canonical Form Application to Differential Equations /

Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. In this book we develop JCF and show how to apply it to solving systems of differential equations. We first develop JCF, including the concepts involved in it-eigenvalues, eigenvectors, and chains of ge...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Weintraub, Steven H. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Synthesis Lectures on Mathematics & Statistics,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-02395-8
003 DE-He213
005 20230112134346.0
007 cr nn 008mamaa
008 220601s2008 sz | s |||| 0|eng d
020 |a 9783031023958  |9 978-3-031-02395-8 
024 7 |a 10.1007/978-3-031-02395-8  |2 doi 
050 4 |a QA1-939 
072 7 |a PB  |2 bicssc 
072 7 |a MAT000000  |2 bisacsh 
072 7 |a PB  |2 thema 
082 0 4 |a 510  |2 23 
100 1 |a Weintraub, Steven H.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Jordan Canonical Form  |h [electronic resource] :  |b Application to Differential Equations /  |c by Steven H. Weintraub. 
250 |a 1st ed. 2008. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2008. 
300 |a VII, 85 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Synthesis Lectures on Mathematics & Statistics,  |x 1938-1751 
505 0 |a Jordan Canonical Form -- Solving Systems of Linear Differential Equations -- Background Results: Bases, Coordinates, and Matrices -- Properties of the Complex Exponential. 
520 |a Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. In this book we develop JCF and show how to apply it to solving systems of differential equations. We first develop JCF, including the concepts involved in it-eigenvalues, eigenvectors, and chains of generalized eigenvectors. We begin with the diagonalizable case and then proceed to the general case, but we do not present a complete proof. Indeed, our interest here is not in JCF per se, but in one of its important applications. We devote the bulk of our attention in this book to showing how to apply JCF to solve systems of constant-coefficient first order differential equations, where it is a very effective tool. We cover all situations-homogeneous and inhomogeneous systems; real and complex eigenvalues. We also treat the closely related topic of the matrix exponential. Our discussion is mostly confined to the 2-by-2 and 3-by-3 cases, and we present a wealth of examples that illustrate all the possibilities in these cases (and of course, exercises for the reader). Table of Contents: Jordan Canonical Form / Solving Systems of Linear Differential Equations / Background Results: Bases, Coordinates, and Matrices / Properties of the Complex Exponential. 
650 0 |a Mathematics. 
650 0 |a Statistics . 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics. 
650 2 4 |a Statistics. 
650 2 4 |a Engineering Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031012679 
776 0 8 |i Printed edition:  |z 9783031035234 
830 0 |a Synthesis Lectures on Mathematics & Statistics,  |x 1938-1751 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-031-02395-8  |z Texto Completo 
912 |a ZDB-2-SXSC 
950 |a Synthesis Collection of Technology (R0) (SpringerNature-85007)