Cargando…

Markov Logic An Interface Layer for Artificial Intelligence /

Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Domingos, Pedro (Autor), Lowd, Daniel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Synthesis Lectures on Artificial Intelligence and Machine Learning,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-01549-6
003 DE-He213
005 20220627231318.0
007 cr nn 008mamaa
008 220601s2009 sz | s |||| 0|eng d
020 |a 9783031015496  |9 978-3-031-01549-6 
024 7 |a 10.1007/978-3-031-01549-6  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Domingos, Pedro.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Markov Logic  |h [electronic resource] :  |b An Interface Layer for Artificial Intelligence /  |c by Pedro Domingos, Daniel Lowd. 
250 |a 1st ed. 2009. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2009. 
300 |a IX, 145 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Synthesis Lectures on Artificial Intelligence and Machine Learning,  |x 1939-4616 
505 0 |a Introduction -- Markov Logic -- Inference -- Learning -- Extensions -- Applications -- Conclusion. 
520 |a Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability, Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of conditional likelihood, convex optimization, and inductive logic programming. Markov logic has been successfully applied to problems in information extraction and integration, natural language processing, robot mapping, social networks, computational biology, and others, and is the basis of the open-source Alchemy system. Table of Contents: Introduction / Markov Logic / Inference / Learning / Extensions / Applications / Conclusion. 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 0 |a Neural networks (Computer science) . 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Machine Learning. 
650 2 4 |a Mathematical Models of Cognitive Processes and Neural Networks. 
700 1 |a Lowd, Daniel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031004216 
776 0 8 |i Printed edition:  |z 9783031026775 
830 0 |a Synthesis Lectures on Artificial Intelligence and Machine Learning,  |x 1939-4616 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-031-01549-6  |z Texto Completo 
912 |a ZDB-2-SXSC 
950 |a Synthesis Collection of Technology (R0) (SpringerNature-85007)