Cargando…

Introduction to Semi-Supervised Learning

Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) wh...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Zhu, Xiaojin (Autor), Goldberg, Andrew. B. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cham : Springer International Publishing : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Synthesis Lectures on Artificial Intelligence and Machine Learning,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-3-031-01548-9
003 DE-He213
005 20220627215307.0
007 cr nn 008mamaa
008 220601s2009 sz | s |||| 0|eng d
020 |a 9783031015489  |9 978-3-031-01548-9 
024 7 |a 10.1007/978-3-031-01548-9  |2 doi 
050 4 |a Q334-342 
050 4 |a TA347.A78 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Zhu, Xiaojin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Semi-Supervised Learning  |h [electronic resource] /  |c by Xiaojin Zhu, Andrew. B Goldberg. 
250 |a 1st ed. 2009. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2009. 
300 |a XII, 116 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Synthesis Lectures on Artificial Intelligence and Machine Learning,  |x 1939-4616 
505 0 |a Introduction to Statistical Machine Learning -- Overview of Semi-Supervised Learning -- Mixture Models and EM -- Co-Training -- Graph-Based Semi-Supervised Learning -- Semi-Supervised Support Vector Machines -- Human Semi-Supervised Learning -- Theory and Outlook. 
520 |a Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook. 
650 0 |a Artificial intelligence. 
650 0 |a Machine learning. 
650 0 |a Neural networks (Computer science) . 
650 1 4 |a Artificial Intelligence. 
650 2 4 |a Machine Learning. 
650 2 4 |a Mathematical Models of Cognitive Processes and Neural Networks. 
700 1 |a Goldberg, Andrew. B.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783031004209 
776 0 8 |i Printed edition:  |z 9783031026768 
830 0 |a Synthesis Lectures on Artificial Intelligence and Machine Learning,  |x 1939-4616 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-3-031-01548-9  |z Texto Completo 
912 |a ZDB-2-SXSC 
950 |a Synthesis Collection of Technology (R0) (SpringerNature-85007)