Cargando…

The BOXES Methodology Black Box Dynamic Control /

Robust control mechanisms customarily require knowledge of the system's describing equations which may be of the high order differential type.  In order to produce these equations, mathematical models can often be derived and correlated with measured dynamic behavior.  There are two flaws in th...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Russell, David W. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2012.
Edición:1st ed. 2012.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84996-528-6
003 DE-He213
005 20220113054020.0
007 cr nn 008mamaa
008 120309s2012 xxk| s |||| 0|eng d
020 |a 9781849965286  |9 978-1-84996-528-6 
024 7 |a 10.1007/978-1-84996-528-6  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
100 1 |a Russell, David W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 4 |a The BOXES Methodology  |h [electronic resource] :  |b Black Box Dynamic Control /  |c by David W. Russell. 
250 |a 1st ed. 2012. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2012. 
300 |a XXII, 226 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1: Introduction -- Part I: Learning and Artificial Intelligence (AI) -- Chapter 2: The Game Metaphor -- Chapter 3: Introduction to BOXES -- Chapter 4: Dynamic control as a game -- Part II: The Trolley and Pole -- Chapter 5: Control of a simulated inverted pendulum using the BOXES method -- Chapter 6: The Liverpool experiment -- Chapter 7: Solving the auto-start dilemma -- Part III: Other BOXES applications -- Chapter 8: Continuous system control.-  Chapter 9: Other on/off control case studies -- Chapter 10: Two non-linear applications -- Part IV: Improving the Algorithm -- Chapter 11:  Accelerated learning -- Chapter 12:  Two advising paradigms -- Chapter 13: Evolutionary studies research -- Chapter 14: Conclusions. 
520 |a Robust control mechanisms customarily require knowledge of the system's describing equations which may be of the high order differential type.  In order to produce these equations, mathematical models can often be derived and correlated with measured dynamic behavior.  There are two flaws in this approach one is the level of inexactness introduced by linearizations and the other when no model is apparent.  Several years ago a new genre of control systems came to light that are much less dependent on differential models such as fuzzy logic and genetic algorithms. Both of these soft computing solutions require quite considerable a priori system knowledge to create a control scheme and sometimes complicated training program before they can be implemented in a real world dynamic system. Michie and Chambers' BOXES methodology created a black box system that was designed to control a mechanically unstable system with very little a priori system knowledge, linearization or approximation.  All the method needed was some notion of maximum and minimum values for the state variables and a set of boundaries that divided each variable into an integer state number.  The BOXES Methodology applies the method to a variety of systems including continuous and chaotic dynamic systems, and discusses how it may be possible to create a generic control method that is self organizing and adaptive that learns with the assistance of near neighbouring states. The BOXES Methodology introduces students at the undergraduate and master's level to black box dynamic system control , and gives lecturers access to background materials that can be used in their courses in support of student research and classroom presentations in novel control systems and real-time applications of artificial intelligence. Designers are provided with a novel method of optimization and controller design when the equations of a system are difficult or unknown. Researchers interested in artificial intelligence (AI) research and models of the brain and practitioners from other areas of biology and technology are given an insight into how AI software can be written and adapted to operate in real-time. 
650 0 |a Control engineering. 
650 0 |a Multibody systems. 
650 0 |a Vibration. 
650 0 |a Mechanics, Applied. 
650 0 |a Algorithms. 
650 0 |a Microprogramming . 
650 0 |a System theory. 
650 0 |a Control theory. 
650 0 |a Artificial intelligence. 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Multibody Systems and Mechanical Vibrations. 
650 2 4 |a Algorithms. 
650 2 4 |a Control Structures and Microprogramming. 
650 2 4 |a Systems Theory, Control . 
650 2 4 |a Artificial Intelligence. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447160809 
776 0 8 |i Printed edition:  |z 9781849965279 
776 0 8 |i Printed edition:  |z 9781849965293 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84996-528-6  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)