Cargando…

Finite Element Model Updating Using Computational Intelligence Techniques Applications to Structural Dynamics /

Finite element models (FEMs) are widely used to understand the dynamic behaviour of various systems. FEM updating allows FEMs to be tuned better to reflect measured data and may be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. Finite E...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Marwala, Tshilidzi (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84996-323-7
003 DE-He213
005 20220118051311.0
007 cr nn 008mamaa
008 100603s2010 xxk| s |||| 0|eng d
020 |a 9781849963237  |9 978-1-84996-323-7 
024 7 |a 10.1007/978-1-84996-323-7  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Marwala, Tshilidzi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Finite Element Model Updating Using Computational Intelligence Techniques  |h [electronic resource] :  |b Applications to Structural Dynamics /  |c by Tshilidzi Marwala. 
250 |a 1st ed. 2010. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2010. 
300 |a XV, 250 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a to Finite-element-model Updating -- Finite-element-model Updating Using Nelder-Mead Simplex and Newton Broyden-Fletcher-Goldfarb-Shanno Methods -- Finite-element-model Updating Using Genetic Algorithm -- Finite-element-model Updating Using Particle-swarm Optimization -- Finite-element-model Updating Using Simulated Annealing -- Finite-element-model Updating Using the Response-surface Method -- Finite-element-model Updating Using a Hybrid Optimization Method -- Finite-element-model Updating Using a Multi-criteria Method -- Finite-element-model Updating Using Artificial Neural Networks -- Finite-element-model Updating Using a Bayesian Approach -- Finite-element-model Updating Applied in Damage Detection -- Conclusions and Emerging State-of-the-art. 
520 |a Finite element models (FEMs) are widely used to understand the dynamic behaviour of various systems. FEM updating allows FEMs to be tuned better to reflect measured data and may be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. Finite Element Model Updating Using Computational Intelligence Techniques applies both strategies to the field of structural mechanics, an area vital for aerospace, civil and mechanical engineering. Vibration data is used for the updating process. Following an introduction a number of computational intelligence techniques to facilitate the updating process are proposed; they include: • multi-layer perceptron neural networks for real-time FEM updating; • particle swarm and genetic-algorithm-based optimization methods to accommodate the demands of global versus local optimization models; • simulated annealing to put the methodologies into a sound statistical basis; and • response surface methods and expectation maximization algorithms to demonstrate how FEM updating can be performed in a cost-effective manner; and to help manage computational complexity. Based on these methods, the most appropriate updated FEM is selected using the Bayesian approach, a problem that traditional FEM updating has not addressed. This is found to incorporate engineering judgment into finite elements systematically through the formulations of prior distributions. Throughout the text, case studies, specifically designed to demonstrate the special principles are included. These serve to test the viability of the new approaches in FEM updating. Finite Element Model Updating Using Computational Intelligence Techniques analyses the state of the art in FEM updating critically and based on these findings, identifies new research directions, making it of interest to researchers in strucural dynamics and practising engineers using FEMs. Graduate students of mechanical, aerospace and civil engineering will also find the text instructive. 
650 0 |a Computational intelligence. 
650 0 |a Mechanics, Applied. 
650 0 |a Solids. 
650 0 |a Mathematics-Data processing. 
650 0 |a Computer simulation. 
650 0 |a Mathematical models. 
650 0 |a Civil engineering. 
650 1 4 |a Computational Intelligence. 
650 2 4 |a Solid Mechanics. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Computer Modelling. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Civil Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781849963220 
776 0 8 |i Printed edition:  |z 9781447157168 
776 0 8 |i Printed edition:  |z 9781849963244 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84996-323-7  |z Texto Completo 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)