Cargando…

Fatigue of Fiber-reinforced Composites

Fatigue has long been recognized as a mechanism that can provoke catastrophic material failure in structural applications and researchers are now turning to the development of prediction tools in order to reduce the cost of determining design criteria for any new material. Fatigue of Fiber-reinforce...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Vassilopoulos, Anastasios P. (Autor), Keller, Thomas (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2011.
Edición:1st ed. 2011.
Colección:Engineering Materials and Processes,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84996-181-3
003 DE-He213
005 20220117100351.0
007 cr nn 008mamaa
008 110712s2011 xxk| s |||| 0|eng d
020 |a 9781849961813  |9 978-1-84996-181-3 
024 7 |a 10.1007/978-1-84996-181-3  |2 doi 
050 4 |a TA455.C43 
072 7 |a TGM  |2 bicssc 
072 7 |a TDCQ  |2 bicssc 
072 7 |a TEC021010  |2 bisacsh 
072 7 |a TGM  |2 thema 
072 7 |a TDCQ  |2 thema 
082 0 4 |a 620.14  |2 23 
100 1 |a Vassilopoulos, Anastasios P.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Fatigue of Fiber-reinforced Composites  |h [electronic resource] /  |c by Anastasios P. Vassilopoulos, Thomas Keller. 
250 |a 1st ed. 2011. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2011. 
300 |a XIV, 238 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Engineering Materials and Processes,  |x 2365-0761 
505 0 |a 1. Introduction to the Fatigue of Fiber-reinforced Polymer Composites -- 2. Experimental Characterization of Fiber-reinforced Composite Materials -- 3. Statistical Analysis of Fatigue Data -- 4. Modeling the Fatigue Behavior of Fiber-reinforced Composite Materials Under Constant Amplitude Loading -- 5. Fatigue of Adhesively-bonded GFRP Structural Joints -- 6. Macroscopic Fatigue Failure Theories for Multiaxial Stress States -- 7. Life Prediction Under Multiaxial Complex Stress States of Variable Amplitude. 
520 |a Fatigue has long been recognized as a mechanism that can provoke catastrophic material failure in structural applications and researchers are now turning to the development of prediction tools in order to reduce the cost of determining design criteria for any new material. Fatigue of Fiber-reinforced Composites explains these highly scientific subjects in a simple yet thorough way. Fatigue behavior of fiber-reinforced composite materials and structural components is described through the presentation of numerous experimental results. Many examples help the reader to visualize the failure modes of laminated composite materials and structural adhesively bonded joints. Theoretical models, based on these experimental data, are demonstrated and their capacity for fatigue life modeling and prediction is thoroughly assessed. Fatigue of Fiber-reinforced Composites gives the reader the opportunity to learn about methods for modeling the fatigue behavior of fiber-reinforced composites, about statistical analysis of experimental data, and about theories for life prediction under loading patterns that produce multiaxial fatigue stress states. The authors combine these theories to establish a complete design process that is able to predict fatigue life of fiber-reinforced composites under multiaxial, variable amplitude stress states. A classic design methodology is presented for demonstration and theoretical predictions are compared to experimental data from typical material systems used in the wind turbine rotor blade industry. Fatigue of Fiber-reinforced Composites also presents novel computational methods for modeling fatigue behavior of composite materials, such as artificial neural networks and genetic programming, as a promising alternative to the conventional methods. It is an ideal source of information for researchers and graduate students in mechanical engineering, civil engineering and materials science. 
650 0 |a Ceramic materials. 
650 0 |a Mechanics, Applied. 
650 0 |a Solids. 
650 0 |a Building materials. 
650 1 4 |a Ceramics. 
650 2 4 |a Solid Mechanics. 
650 2 4 |a Building Materials. 
700 1 |a Keller, Thomas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781849961806 
776 0 8 |i Printed edition:  |z 9781447126942 
776 0 8 |i Printed edition:  |z 9781849961820 
830 0 |a Engineering Materials and Processes,  |x 2365-0761 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84996-181-3  |z Texto Completo 
912 |a ZDB-2-CMS 
912 |a ZDB-2-SXC 
950 |a Chemistry and Materials Science (SpringerNature-11644) 
950 |a Chemistry and Material Science (R0) (SpringerNature-43709)