Support Vector Machines for Pattern Classification
Originally formulated for two-class classification problems, support vector machines (SVMs) are now accepted as powerful tools for developing pattern classification and function approximation systems. Recent developments in kernel-based methods include kernel classifiers and regressors and their var...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Autor Corporativo: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Springer London : Imprint: Springer,
2010.
|
Edición: | 2nd ed. 2010. |
Colección: | Advances in Computer Vision and Pattern Recognition,
|
Temas: | |
Acceso en línea: | Texto Completo |
Tabla de Contenidos:
- Two-Class Support Vector Machines
- Multiclass Support Vector Machines
- Variants of Support Vector Machines
- Training Methods
- Kernel-Based Methods Kernel@Kernel-based method
- Feature Selection and Extraction
- Clustering
- Maximum-Margin Multilayer Neural Networks
- Maximum-Margin Fuzzy Classifiers
- Function Approximation.