Cargando…

Support Vector Machines for Pattern Classification

Originally formulated for two-class classification problems, support vector machines (SVMs) are now accepted as powerful tools for developing pattern classification and function approximation systems. Recent developments in kernel-based methods include kernel classifiers and regressors and their var...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Abe, Shigeo (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2010.
Edición:2nd ed. 2010.
Colección:Advances in Computer Vision and Pattern Recognition,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84996-098-4
003 DE-He213
005 20220120081122.0
007 cr nn 008mamaa
008 100721s2010 xxk| s |||| 0|eng d
020 |a 9781849960984  |9 978-1-84996-098-4 
024 7 |a 10.1007/978-1-84996-098-4  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a GPFC  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8312  |2 23 
082 0 4 |a 003  |2 23 
100 1 |a Abe, Shigeo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Support Vector Machines for Pattern Classification  |h [electronic resource] /  |c by Shigeo Abe. 
250 |a 2nd ed. 2010. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2010. 
300 |a XX, 473 p. 114 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
505 0 |a Two-Class Support Vector Machines -- Multiclass Support Vector Machines -- Variants of Support Vector Machines -- Training Methods -- Kernel-Based Methods Kernel@Kernel-based method -- Feature Selection and Extraction -- Clustering -- Maximum-Margin Multilayer Neural Networks -- Maximum-Margin Fuzzy Classifiers -- Function Approximation. 
520 |a Originally formulated for two-class classification problems, support vector machines (SVMs) are now accepted as powerful tools for developing pattern classification and function approximation systems. Recent developments in kernel-based methods include kernel classifiers and regressors and their variants, advancements in generalization theory, and various feature selection and extraction methods. Providing a unique perspective on the state of the art in SVMs, with a particular focus on classification, this thoroughly updated new edition includes a more rigorous performance comparison of classifiers and regressors. In addition to presenting various useful architectures for multiclass classification and function approximation problems, the book now also investigates evaluation criteria for classifiers and regressors. Topics and Features: Clarifies the characteristics of two-class SVMs through extensive analysis Discusses kernel methods for improving the generalization ability of conventional neural networks and fuzzy systems Contains ample illustrations, examples and computer experiments to help readers understand the concepts and their usefulness Includes performance evaluation using publicly available two-class data sets, microarray sets, multiclass data sets, and regression data sets (NEW) Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation (NEW) Covers sparse SVMs, an approach to learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning (NEW) Explores incremental training based batch training and active-set training methods, together with decomposition techniques for linear programming SVMs (NEW) Provides a discussion on variable selection for support vector regressors (NEW) An essential guide on the use of SVMs in pattern classification, this comprehensive resource will be of interest to researchers and postgraduate students, as well as professional developers. Dr. Shigeo Abe is a Professor at Kobe University, Graduate School of Engineering. He is the author of the Springer titles Neural Networks and Fuzzy Systems and Pattern Classification: Neuro-fuzzy Methods and Their Comparison. 
650 0 |a Control engineering. 
650 0 |a Pattern recognition systems. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Artificial intelligence. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Control and Systems Theory. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Natural Language Processing (NLP). 
650 2 4 |a Artificial Intelligence. 
650 2 4 |a Control, Robotics, Automation. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781849960991 
776 0 8 |i Printed edition:  |z 9781849960977 
776 0 8 |i Printed edition:  |z 9781447125488 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84996-098-4  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)