Cargando…

Graphs and Matrices

Whilst it is a moot point amongst researchers, linear algebra is an important component in the study of graphs. This book illustrates the elegance and power of matrix techniques in the study of graphs by means of several results, both classical and recent. The emphasis on matrix techniques is greate...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Bapat, Ravindra B. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84882-981-7
003 DE-He213
005 20220118042718.0
007 cr nn 008mamaa
008 100721s2010 xxk| s |||| 0|eng d
020 |a 9781848829817  |9 978-1-84882-981-7 
024 7 |a 10.1007/978-1-84882-981-7  |2 doi 
050 4 |a QA184-205 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002050  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512.5  |2 23 
100 1 |a Bapat, Ravindra B.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Graphs and Matrices  |h [electronic resource] /  |c by Ravindra B. Bapat. 
250 |a 1st ed. 2010. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2010. 
300 |a IX, 171 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Preliminaries -- Incidence Matrix -- Adjacency Matrix -- Laplacian Matrix -- Cycles and Cuts -- Regular Graphs -- Algebraic Connectivity -- Distance Matrix of a Tree -- Resistance Distance -- Laplacian Eigenvalues of Threshold Graphs -- Positive Definite Completion Problem -- Matrix Games Based on Graphs -- Hints and Solutions to Selected Exercises. 
520 |a Whilst it is a moot point amongst researchers, linear algebra is an important component in the study of graphs. This book illustrates the elegance and power of matrix techniques in the study of graphs by means of several results, both classical and recent. The emphasis on matrix techniques is greater than other standard references on algebraic graph theory, and the important matrices associated with graphs such as incidence, adjacency and Laplacian matrices are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration, and the inclusion of exercises enables practical learning throughout the book. It may also be applied to a selection of sub-disciplines within science and engineering. Whilst this book will be invaluable to students and researchers in graph theory and combinatorial matrix theory who want to be acquainted with matrix theoretic ideas used in graph theory, it will also benefit a wider, cross-disciplinary readership. 
650 0 |a Algebras, Linear. 
650 1 4 |a Linear Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848829862 
776 0 8 |i Printed edition:  |z 9781848829800 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84882-981-7  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)