Cargando…

Topics in Physical Mathematics

The roots of 'physical mathematics' can be traced back to the very beginning of man's attempts to understand nature. Indeed, mathematics and physics were part of what was called natural philosophy. Rapid growth of the physical sciences, aided by technological progress and increasing a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Marathe, Kishore (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84882-939-8
003 DE-He213
005 20220118033342.0
007 cr nn 008mamaa
008 100809s2010 xxk| s |||| 0|eng d
020 |a 9781848829398  |9 978-1-84882-939-8 
024 7 |a 10.1007/978-1-84882-939-8  |2 doi 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
072 7 |a PBMP  |2 thema 
082 0 4 |a 516.36  |2 23 
100 1 |a Marathe, Kishore.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Topics in Physical Mathematics  |h [electronic resource] /  |c by Kishore Marathe. 
250 |a 1st ed. 2010. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2010. 
300 |a XXII, 442 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Algebra -- Topology -- Manifolds -- Bundles and Connections -- Characteristic Classes -- Theory of Fields, I: Classical -- Theory of Fields, II: Quantum and Topological -- Yang-Mills-Higgs Fields -- 4-Manifold Invariants -- 3-Manifold Invariants -- Knot and Link Invariants. 
520 |a The roots of 'physical mathematics' can be traced back to the very beginning of man's attempts to understand nature. Indeed, mathematics and physics were part of what was called natural philosophy. Rapid growth of the physical sciences, aided by technological progress and increasing abstraction in mathematical research, caused a separation of the sciences and mathematics in the 20th century. Physicists' methods were often rejected by mathematicians as imprecise, and mathematicians' approach to physical theories was not understood by the physicists. However, two fundamental physical theories, relativity and quantum theory, influenced new developments in geometry, functional analysis and group theory. The relation of Yang-Mills theory to the theory of connections in a fiber bundle discovered in the early 1980s has paid rich dividends to the geometric topology of low dimensional manifolds. Aimed at a wide audience, this self-contained book includes a detailed background from both mathematics and theoretical physics to enable a deeper understanding of the role that physical theories play in mathematics. Whilst the field continues to expand rapidly, it is not the intention of this book to cover its enormity. Instead, it seeks to lead the reader to their next point of exploration in this vast and exciting landscape. 
650 0 |a Geometry, Differential. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Topology. 
650 0 |a Algebraic fields. 
650 0 |a Polynomials. 
650 0 |a Global analysis (Mathematics). 
650 1 4 |a Differential Geometry. 
650 2 4 |a Manifolds and Cell Complexes. 
650 2 4 |a Topology. 
650 2 4 |a Field Theory and Polynomials. 
650 2 4 |a Global Analysis and Analysis on Manifolds. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848829459 
776 0 8 |i Printed edition:  |z 9781848829381 
776 0 8 |i Printed edition:  |z 9781447161219 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84882-939-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)