Cargando…

Natural Image Statistics A Probabilistic Approach to Early Computational Vision. /

One of the most successful frameworks in computational neuroscience is modelling visual processing using the statistical structure of natural images. In this framework, the visual system of the brain constructs a model of the statistical regularities of the incoming visual data. This enables the vis...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Hyvärinen, Aapo (Autor), Hurri, Jarmo (Autor), Hoyer, Patrick O. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Computational Imaging and Vision ; 39
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84882-491-1
003 DE-He213
005 20220119052524.0
007 cr nn 008mamaa
008 100301s2009 xxk| s |||| 0|eng d
020 |a 9781848824911  |9 978-1-84882-491-1 
024 7 |a 10.1007/978-1-84882-491-1  |2 doi 
050 4 |a RC321-580 
072 7 |a PSAN  |2 bicssc 
072 7 |a MED057000  |2 bisacsh 
072 7 |a PSAN  |2 thema 
082 0 4 |a 612.8  |2 23 
100 1 |a Hyvärinen, Aapo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Natural Image Statistics  |h [electronic resource] :  |b A Probabilistic Approach to Early Computational Vision. /  |c by Aapo Hyvärinen, Jarmo Hurri, Patrick O. Hoyer. 
250 |a 1st ed. 2009. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2009. 
300 |a XIX, 448 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Computational Imaging and Vision ;  |v 39 
505 0 |a Background -- Linear Filters and Frequency Analysis -- Outline of the Visual System -- Multivariate Probability and Statistics -- Statistics of Linear Features -- Principal Components and Whitening -- Sparse Coding and Simple Cells -- Independent Component Analysis -- Information-Theoretic Interpretations -- Nonlinear Features and Dependency of Linear Features -- Energy Correlation of Linear Features and Normalization -- Energy Detectors and Complex Cells -- Energy Correlations and Topographic Organization -- Dependencies of Energy Detectors: Beyond V1 -- Overcomplete and Non-negative Models -- Lateral Interactions and Feedback -- Time, Color, and Stereo -- Color and Stereo Images -- Temporal Sequences of Natural Images -- Conclusion -- Conclusion and Future Prospects -- Appendix: Supplementary Mathematical Tools -- Optimization Theory and Algorithms -- Crash Course on Linear Algebra -- The Discrete Fourier Transform -- Estimation of Non-normalized Statistical Models. 
520 |a One of the most successful frameworks in computational neuroscience is modelling visual processing using the statistical structure of natural images. In this framework, the visual system of the brain constructs a model of the statistical regularities of the incoming visual data. This enables the visual system to perform efficient probabilistic inference. The same framework is also very useful in engineering applications such as image processing and computer vision. This book is the first comprehensive introduction to the multidisciplinary field of natural image statistics and its intention is to present a general theory of early vision and image processing in a manner that can be approached by readers from a variety of scientific backgrounds. A wealth of relevant background material is presented in the first section as an introduction to the subject. Following this are five unique sections, carefully selected so as to give a clear overview of all the basic theory, as well as the most recent developments and research. This structure, together with the included exercises and computer assignments, also make it an excellent textbook. Natural Image Statistics is a timely and valuable resource for advanced students and researchers in any discipline related to vision, such as neuroscience, computer science, psychology, electrical engineering, cognitive science or statistics. 
650 0 |a Neurosciences. 
650 0 |a Image processing-Digital techniques. 
650 0 |a Computer vision. 
650 0 |a Signal processing. 
650 1 4 |a Neuroscience. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Signal, Speech and Image Processing . 
700 1 |a Hurri, Jarmo.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Hoyer, Patrick O.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848825031 
776 0 8 |i Printed edition:  |z 9781848824904 
776 0 8 |i Printed edition:  |z 9781849968447 
830 0 |a Computational Imaging and Vision ;  |v 39 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84882-491-1  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)