Cargando…

Geometric Algebra: An Algebraic System for Computer Games and Animation

The true power of vectors has never been exploited, for over a century, mathematicians, engineers, scientists, and more recently programmers, have been using vectors to solve an extraordinary range of problems. However, today, we can discover the true potential of oriented, lines, planes and volumes...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Vince, John A. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84882-379-2
003 DE-He213
005 20220117031134.0
007 cr nn 008mamaa
008 100301s2009 xxk| s |||| 0|eng d
020 |a 9781848823792  |9 978-1-84882-379-2 
024 7 |a 10.1007/978-1-84882-379-2  |2 doi 
050 4 |a QA76.9.M35 
072 7 |a UYAM  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a UYAM  |2 thema 
082 0 4 |a 004.0151  |2 23 
100 1 |a Vince, John A.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Geometric Algebra: An Algebraic System for Computer Games and Animation  |h [electronic resource] /  |c by John A. Vince. 
250 |a 1st ed. 2009. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2009. 
300 |a XVIII, 195 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Products -- VectorProducts -- The Geometric Product -- Geometric Algebra -- Products in 2D -- Products in 3D -- Reflections and Rotations -- Applied Geometric Algebra -- Conclusion. 
520 |a The true power of vectors has never been exploited, for over a century, mathematicians, engineers, scientists, and more recently programmers, have been using vectors to solve an extraordinary range of problems. However, today, we can discover the true potential of oriented, lines, planes and volumes in the form of geometric algebra. As such geometric elements are central to the world of computer games and computer animation, geometric algebra offers programmers new ways of solving old problems. John Vince (best-selling author of a number of books including Geometry for Computer Graphics, Vector Analysis for Computer Graphics and Geometric Algebra for Computer Graphics) provides new insights into geometric algebra and its application to computer games and animation. The first two chapters review the products for real, complex and quaternion structures, and any non-commutative qualities that they possess. Chapter three reviews the familiar scalar and vector products and introduces the idea of 'dyadics', which provide a useful mechanism for describing the features of geometric algebra. Chapter four introduces the geometric product and defines the inner and outer products, which are employed in the following chapter on geometric algebra. Chapters six and seven cover all the 2D and 3D products between scalars, vectors, bivectors and trivectors. Chapter eight shows how geometric algebra brings new insights into reflections and rotations, especially in 3D. Finally, chapter nine explores a wide range of 2D and 3D geometric problems followed by a concluding tenth chapter. Filled with lots of clear examples, full-colour illustrations and tables, this compact book provides an excellent introduction to geometric algebra for practitioners in computer games and animation. 
650 0 |a Computer science-Mathematics. 
650 0 |a Application software. 
650 0 |a Algebraic geometry. 
650 0 |a Software engineering. 
650 0 |a Computer science. 
650 0 |a Image processing-Digital techniques. 
650 0 |a Computer vision. 
650 1 4 |a Mathematics of Computing. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Software Engineering. 
650 2 4 |a Computer Science. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848824119 
776 0 8 |i Printed edition:  |z 9781848823785 
776 0 8 |i Printed edition:  |z 9781447168782 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84882-379-2  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)