Cargando…

Specialization of Quadratic and Symmetric Bilinear Forms

The specialization theory of quadratic and symmetric bilinear forms over fields and the subsequent generic splitting theory of quadratic forms were invented by the author in the mid-1970's. They came to fruition in the ensuing decades and have become an integral part of the geometric methods in...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Knebusch, Manfred (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2010.
Edición:1st ed. 2010.
Colección:Algebra and Applications, 11
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84882-242-9
003 DE-He213
005 20220117014534.0
007 cr nn 008mamaa
008 110121s2010 xxk| s |||| 0|eng d
020 |a 9781848822429  |9 978-1-84882-242-9 
024 7 |a 10.1007/978-1-84882-242-9  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Knebusch, Manfred.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Specialization of Quadratic and Symmetric Bilinear Forms  |h [electronic resource] /  |c by Manfred Knebusch. 
250 |a 1st ed. 2010. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2010. 
300 |a XIV, 192 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algebra and Applications,  |x 2192-2950 ;  |v 11 
505 0 |a Fundamentals of Specialization Theory -- Generic Splitting Theory -- Some Applications -- Specialization with Respect to Quadratic Places. 
520 |a The specialization theory of quadratic and symmetric bilinear forms over fields and the subsequent generic splitting theory of quadratic forms were invented by the author in the mid-1970's. They came to fruition in the ensuing decades and have become an integral part of the geometric methods in quadratic form theory. This book comprehensively covers the specialization and generic splitting theories. These theories, originally developed mainly for fields of characteristic different from 2, are explored here without this restriction. In this book, a quadratic form φ over a field of characteristic 2 is allowed to have a big quasilinear part QL(φ) (defined as the restriction of φ to the radical of the bilinear form associated to φ), while in most of the literature QL(φ) is assumed to have dimension at most 1. Of course, in nature, quadratic forms with a big quasilinear part abound. In addition to chapters on specialization theory, generic splitting theory and their applications, the book's final chapter contains research never before published on specialization with respect to quadratic places and will provide the reader with a glimpse towards the future. 
650 0 |a Algebra. 
650 1 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447125860 
776 0 8 |i Printed edition:  |z 9781848822504 
776 0 8 |i Printed edition:  |z 9781848822412 
830 0 |a Algebra and Applications,  |x 2192-2950 ;  |v 11 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84882-242-9  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)