Cargando…

A Course in Formal Languages, Automata and Groups

Based on the author's lecture notes for an MSc course, this text combines formal language and automata theory and group theory, a thriving research area that has developed extensively over the last twenty-five years. The aim of the first three chapters is to give a rigorous proof that various n...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Chiswell, Ian M. (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84800-940-0
003 DE-He213
005 20220118191540.0
007 cr nn 008mamaa
008 110406s2009 xxk| s |||| 0|eng d
020 |a 9781848009400  |9 978-1-84800-940-0 
024 7 |a 10.1007/978-1-84800-940-0  |2 doi 
050 4 |a QA174-183 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
072 7 |a PBG  |2 thema 
082 0 4 |a 512.2  |2 23 
100 1 |a Chiswell, Ian M.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Course in Formal Languages, Automata and Groups  |h [electronic resource] /  |c by Ian M. Chiswell. 
250 |a 1st ed. 2009. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2009. 
300 |a IX, 157 p. 30 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Preface -- Contents -- 1. Grammars and Machine Recognition -- 2. Recursive Functions -- 3. Recursively Enumerable Sets and Languages -- 4. Context-free language -- 5. Connections with Group Theory -- A. Results and Proofs Omitted in the Text -- B. The Halting Problem and Universal Turing Machines -- C. Cantor's Diagonal Argument -- D. Solutions to Selected Exercises -- References -- Index. 
520 |a Based on the author's lecture notes for an MSc course, this text combines formal language and automata theory and group theory, a thriving research area that has developed extensively over the last twenty-five years. The aim of the first three chapters is to give a rigorous proof that various notions of recursively enumerable language are equivalent. Chapter One begins with languages defined by Chomsky grammars and the idea of machine recognition, contains a discussion of Turing Machines, and includes work on finite state automata and the languages they recognise. The following chapters then focus on topics such as recursive functions and predicates; recursively enumerable sets of natural numbers; and the group-theoretic connections of language theory, including a brief introduction to automatic groups. Highlights include: A comprehensive study of context-free languages and pushdown automata in Chapter Four, in particular a clear and complete account of the connection between LR(k) languages and deterministic context-free languages. A self-contained discussion of the significant Muller-Schupp result on context-free groups. Enriched with precise definitions, clear and succinct proofs and worked examples, the book is aimed primarily at postgraduate students in mathematics but will also be of great interest to researchers in mathematics and computer science who want to learn more about the interplay between group theory and formal languages. A solutions manual is available to instructors via www.springer.com. 
650 0 |a Group theory. 
650 0 |a Machine theory. 
650 0 |a Algebraic topology. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Algebra, Homological. 
650 1 4 |a Group Theory and Generalizations. 
650 2 4 |a Formal Languages and Automata Theory. 
650 2 4 |a Algebraic Topology. 
650 2 4 |a Manifolds and Cell Complexes. 
650 2 4 |a Category Theory, Homological Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848009479 
776 0 8 |i Printed edition:  |z 9781848009394 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84800-940-0  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)