Cargando…

Embedded Computer Vision

Embedded Computer Vision, exemplified by the migration from powerful workstations to embedded processors in computer vision applications, is a new and emerging field that enables an associated shift in application development and implementation. This comprehensive volume brings together a wealth of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Kisacanin, Branislav (Editor ), Bhattacharyya, Shuvra S. (Editor ), Chai, Sek (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2009.
Edición:1st ed. 2009.
Colección:Advances in Computer Vision and Pattern Recognition,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84800-304-0
003 DE-He213
005 20220118060601.0
007 cr nn 008mamaa
008 100301s2009 xxk| s |||| 0|eng d
020 |a 9781848003040  |9 978-1-84800-304-0 
024 7 |a 10.1007/978-1-84800-304-0  |2 doi 
050 4 |a TA1634 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM012000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.37  |2 23 
245 1 0 |a Embedded Computer Vision  |h [electronic resource] /  |c edited by Branislav Kisacanin, Shuvra S. Bhattacharyya, Sek Chai. 
250 |a 1st ed. 2009. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2009. 
300 |a XXVIII, 284 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
505 0 |a Hardware Considerations for Embedded Vision Systems -- Design Methodology for Embedded Computer Vision Systems -- We Canwatch It For You Wholesale -- Advances in Embedded Computer Vision -- Using Robust Local Features on DSP-Based Embedded Systems -- Benchmarks of Low-Level Vision Algorithms for DSP, FPGA, and Mobile PC Processors -- SAD-Based Stereo Matching Using FPGAs -- Motion History Histograms for Human Action Recognition -- Embedded Real-Time Surveillance Using Multimodal Mean Background Modeling -- Implementation Considerations for Automotive Vision Systems on a Fixed-Point DSP -- Towards OpenVL: Improving Real-Time Performance of Computer Vision Applications -- Looking Ahead -- Mobile Challenges for Embedded Computer Vision -- Challenges in Video Analytics -- Challenges of Embedded Computer Vision in Automotive Safety Systems. 
520 |a Embedded Computer Vision, exemplified by the migration from powerful workstations to embedded processors in computer vision applications, is a new and emerging field that enables an associated shift in application development and implementation. This comprehensive volume brings together a wealth of experiences from leading researchers in the field of embedded computer vision, from both academic and industrial research centers, and covers a broad range of challenges and trade-offs brought about by this paradigm shift. Part I provides an exposition of basic issues and applications in the area necessary for understanding the present and future work. Part II offers chapters based on the most recent research and results. Finally, the last part looks ahead, providing a sense of what major applications could be expected in the near future, describing challenges in mobile environments, video analytics, and automotive safety applications. Features: • Discusses the latest state-of-the-art techniques in embedded computer vision • Presents a thorough introductory section on hardware and architectures, design methodologies, and video analytics to aid the reader's understanding through the following chapters • Offers emphasis on tackling important problems for society, safety, security, health, mobility, connectivity, and energy efficiency • Discusses evaluation of trade-offs required to design cost-effective systems for successful products • Explores the advantages of various architectures, development of high-level software frameworks and cost-effective algorithmic alternatives • Examines issues of implementation on fixed-point processors, presented through an example of an automotive safety application • Offers insights from leaders in the field on what future applications will be This book is a welcome collection of stand-alone articles, ideal for researchers, practitioners, and graduate students. It provides historical perspective, the latest research results, and a vision for future developments in the emerging field of embedded computer vision. Supplementary material can be found at http://www.embeddedvisioncentral.com. 
650 0 |a Computer vision. 
650 0 |a Pattern recognition systems. 
650 0 |a Image processing-Digital techniques. 
650 1 4 |a Computer Vision. 
650 2 4 |a Automated Pattern Recognition. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
700 1 |a Kisacanin, Branislav.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Bhattacharyya, Shuvra S.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Chai, Sek.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781849967761 
776 0 8 |i Printed edition:  |z 9781848822634 
776 0 8 |i Printed edition:  |z 9781848003033 
830 0 |a Advances in Computer Vision and Pattern Recognition,  |x 2191-6594 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84800-304-0  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)