Cargando…

Algebraic Geometry An Introduction /

Aimed primarily at graduate students and beginning researchers, this book provides an introduction to algebraic geometry that is particularly suitable for those with no previous contact with the subject and assumes only the standard background of undergraduate algebra. It is developed from a masters...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Perrin, Daniel (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84800-056-8
003 DE-He213
005 20220119005553.0
007 cr nn 008mamaa
008 100301s2008 xxk| s |||| 0|eng d
020 |a 9781848000568  |9 978-1-84800-056-8 
024 7 |a 10.1007/978-1-84800-056-8  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Perrin, Daniel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Algebraic Geometry  |h [electronic resource] :  |b An Introduction /  |c by Daniel Perrin. 
250 |a 1st ed. 2008. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2008. 
300 |a XI, 263 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a Affine algebraic sets -- Projective algebraic sets -- Sheaves and varieties -- Dimension -- Tangent spaces and singular points -- Bézout's theorem -- Sheaf cohomology -- Arithmetic genus of curves and the weak Riemann-Roch theorem -- Rational maps, geometric genus and rational curves -- Liaison of space curves. 
520 |a Aimed primarily at graduate students and beginning researchers, this book provides an introduction to algebraic geometry that is particularly suitable for those with no previous contact with the subject and assumes only the standard background of undergraduate algebra. It is developed from a masters course given at the Université Paris-Sud, Orsay, and focusses on projective algebraic geometry over an algebraically closed base field. The book starts with easily-formulated problems with non-trivial solutions - for example, Bézout's theorem and the problem of rational curves - and uses these problems to introduce the fundamental tools of modern algebraic geometry: dimension; singularities; sheaves; varieties; and cohomology. The treatment uses as little commutative algebra as possible by quoting without proof (or proving only in special cases) theorems whose proof is not necessary in practice, the priority being to develop an understanding of the phenomena rather than a mastery of the technique. A range of exercises is provided for each topic discussed, and a selection of problems and exam papers are collected in an appendix to provide material for further study. 
650 0 |a Algebraic geometry. 
650 0 |a Universal algebra. 
650 0 |a Mathematics. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a General Algebraic Systems. 
650 2 4 |a Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848006959 
776 0 8 |i Printed edition:  |z 9781848000551 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84800-056-8  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)