Cargando…

Isomonodromic Deformations and Frobenius Manifolds An Introduction /

The notion of a Frobenius structure on a complex analytic manifold appeared at the end of the seventies in the theory of singularities of holomorphic functions. Motivated by physical considerations, further development of the theory has opened new perspectives on, and revealed new links between, man...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Sabbah, Claude (Autor)
Autor Corporativo: SpringerLink (Online service)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Colección:Universitext,
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84800-054-4
003 DE-He213
005 20220114105532.0
007 cr nn 008mamaa
008 100301s2008 xxk| s |||| 0|eng d
020 |a 9781848000544  |9 978-1-84800-054-4 
024 7 |a 10.1007/978-1-84800-054-4  |2 doi 
050 4 |a QA564-609 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
082 0 4 |a 516.35  |2 23 
100 1 |a Sabbah, Claude.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Isomonodromic Deformations and Frobenius Manifolds  |h [electronic resource] :  |b An Introduction /  |c by Claude Sabbah. 
250 |a 1st ed. 2008. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2008. 
300 |a XIV, 279 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 2191-6675 
505 0 |a The language of fibre bundles -- Holomorphic vector bundles on the Riemann sphere -- The Riemann-Hilbert correspondence on a Riemann surface -- Lattices -- The Riemann-Hilbert problem and Birkhoff's problem -- Fourier-Laplace duality -- Integrable deformations of bundles with connection on the Riemann sphere -- Saito structures and Frobenius structures on a complex analytic manifold. 
520 |a The notion of a Frobenius structure on a complex analytic manifold appeared at the end of the seventies in the theory of singularities of holomorphic functions. Motivated by physical considerations, further development of the theory has opened new perspectives on, and revealed new links between, many apparently unrelated areas of mathematics and physics. Based on a series of graduate lectures, this book provides an introduction to algebraic geometric methods in the theory of complex linear differential equations. Starting from basic notions in complex algebraic geometry, it develops some of the classical problems of linear differential equations and ends with applications to recent research questions related to mirror symmetry. The fundamental tool used within the book is that of a vector bundle with connection. There is a detailed analysis of the singularities of such objects and of their deformations, and coverage of the techniques used in the resolution of the Riemann-Hilbert problem and Birkhoff's problem. An approach to Frobenius manifolds using isomonodromic deformations of linear differential equations is also developed. Aimed at graduate students and researchers, the book assumes some familiarity with basic complex algebraic geometry. 
650 0 |a Algebraic geometry. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 1 4 |a Algebraic Geometry. 
650 2 4 |a Mathematics. 
650 2 4 |a Algebra. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848006942 
776 0 8 |i Printed edition:  |z 9781848000537 
830 0 |a Universitext,  |x 2191-6675 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84800-054-4  |z Texto Completo 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)