Cargando…

Survey of Text Mining II Clustering, Classification, and Retrieval /

The proliferation of digital computing devices and their use in communication has resulted in an increased demand for systems and algorithms capable of mining textual data. Thus, the development of techniques for mining unstructured, semi-structured, and fully-structured textual data has become incr...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor Corporativo: SpringerLink (Online service)
Otros Autores: Berry, Michael W. (Editor ), Castellanos, Malu (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Springer London : Imprint: Springer, 2008.
Edición:1st ed. 2008.
Temas:
Acceso en línea:Texto Completo

MARC

LEADER 00000nam a22000005i 4500
001 978-1-84800-046-9
003 DE-He213
005 20220113014805.0
007 cr nn 008mamaa
008 100301s2008 xxk| s |||| 0|eng d
020 |a 9781848000469  |9 978-1-84800-046-9 
024 7 |a 10.1007/978-1-84800-046-9  |2 doi 
050 4 |a QA76.9.D35 
050 4 |a Q350-390 
072 7 |a UMB  |2 bicssc 
072 7 |a GPF  |2 bicssc 
072 7 |a COM031000  |2 bisacsh 
072 7 |a UMB  |2 thema 
072 7 |a GPF  |2 thema 
082 0 4 |a 005.73  |2 23 
082 0 4 |a 003.54  |2 23 
245 1 0 |a Survey of Text Mining II  |h [electronic resource] :  |b Clustering, Classification, and Retrieval /  |c edited by Michael W. Berry, Malu Castellanos. 
250 |a 1st ed. 2008. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2008. 
300 |a XVI, 240 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Clustering -- Cluster-Preserving Dimension Reduction Methods for Document Classification -- Automatic Discovery of SimilarWords -- Principal Direction Divisive Partitioning with Kernels and k-Means Steering -- Hybrid Clustering with Divergences -- Text Clustering with Local Semantic Kernels -- Document Retrieval and Representation -- Vector Space Models for Search and Cluster Mining -- Applications of Semidefinite Programming in XML Document Classification -- Email Surveillance and Filtering -- Discussion Tracking in Enron Email Using PARAFAC -- Spam Filtering Based on Latent Semantic Indexing -- Anomaly Detection -- A Probabilistic Model for Fast and Confident Categorization of Textual Documents -- Anomaly Detection Using Nonnegative Matrix Factorization -- Document Representation and Quality of Text: An Analysis. 
520 |a The proliferation of digital computing devices and their use in communication has resulted in an increased demand for systems and algorithms capable of mining textual data. Thus, the development of techniques for mining unstructured, semi-structured, and fully-structured textual data has become increasingly important in both academia and industry. This second volume continues to survey the evolving field of text mining - the application of techniques of machine learning, in conjunction with natural language processing, information extraction and algebraic/mathematical approaches, to computational information retrieval. Numerous diverse issues are addressed, ranging from the development of new learning approaches to novel document clustering algorithms, collectively spanning several major topic areas in text mining. Features: • Acts as an important benchmark in the development of current and future approaches to mining textual information • Serves as an excellent companion text for courses in text and data mining, information retrieval and computational statistics • Experts from academia and industry share their experiences in solving large-scale retrieval and classification problems • Presents an overview of current methods and software for text mining • Highlights open research questions in document categorization and clustering, and trend detection • Describes new application problems in areas such as email surveillance and anomaly detection Survey of Text Mining II offers a broad selection in state-of-the art algorithms and software for text mining from both academic and industrial perspectives, to generate interest and insight into the state of the field. This book will be an indispensable resource for researchers, practitioners, and professionals involved in information retrieval, computational statistics, and data mining. Michael W. Berry is a professor in the Department of Electrical Engineering and Computer Science at the University of Tennessee, Knoxville. Malu Castellanos is a senior researcher at Hewlett-Packard Laboratories in Palo Alto, California. 
650 0 |a Data structures (Computer science). 
650 0 |a Information theory. 
650 0 |a Natural language processing (Computer science). 
650 0 |a Information storage and retrieval systems. 
650 0 |a Application software. 
650 0 |a Multimedia systems. 
650 0 |a Mathematics. 
650 1 4 |a Data Structures and Information Theory. 
650 2 4 |a Natural Language Processing (NLP). 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Computer and Information Systems Applications. 
650 2 4 |a Multimedia Information Systems. 
650 2 4 |a Applications of Mathematics. 
700 1 |a Berry, Michael W.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Castellanos, Malu.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781849967136 
776 0 8 |i Printed edition:  |z 9781848006911 
776 0 8 |i Printed edition:  |z 9781848000452 
856 4 0 |u https://doi.uam.elogim.com/10.1007/978-1-84800-046-9  |z Texto Completo 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)